Skip to main content
Log in

Influence of Surfactant on the Characteristics of W1/O/W2-Microparticles

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The water-in-oil-in water (W1/O/W2) double emulsion evaporation technique is widely used when the microencapsulation of soluble agents like naloxone HCl is intended. The present work shows the effect of HLB emulsifiers added to phase O on microsphere morphology, size, release, drug encapsulation efficiency. The addition of sorbitan ester to first emulsion (W1/O) and the HLB of the surfactant have an important effect on the characteristics of poly-lactide-co-glycolide (PLGA) microparticles (MP). This MP with sorbitan esters added were smaller and released the hydrophilic drug, naloxone, with no-significant difference at pH 5 versus pH 7.5 (phosphate medium). This is an important fact when long-drug release is considered since it is known that PLGA degradation leads to media acidification. The HLB value had an important effect on drug loading. Sorbitan monooleate led to the highest naloxone loading. Because of its low HLB (4.3), it is most suitable for stabilizing the W1/O emulsion, which is fundamental for the successful entrapment of a hydrophilic compound in MP prepared by double emulsion technique. Finally, drug solubility in the MP matrixes cannot be considered as a predictive parameter for drug encapsulation. Both surfactants increased the naloxone solubility in the polymer PLGA and only sorbitan monooleate increased the drug entrapment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ogawa Y, Yamamoto M, Okada H, Yashiki T, Shimamoto T (1988) A new technique to efficiently entrap leuprolide acetate into microcapsules of polylactic acid or copoly (lactic/glycolic) acid. Chem Pharm Bull 36:1095–1103

    Article  CAS  Google Scholar 

  2. Siepmann J, Elhkharraz K, Siepmann F (2005) How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment. Biomacromolecules 6:312–319

    Article  Google Scholar 

  3. Bodmer D, Kissel T, Traechslin E (1992) Factors influencing the release of peptides and proteins from biodegradable parenteral depot systems. J Control Release 21:129–138

    Article  CAS  Google Scholar 

  4. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490

    Article  CAS  Google Scholar 

  5. Jalil R, Nixon JR (1990) Microencapsulation using poly (L-lactic acid) II: preparative variables affecting microcapsule properties. J Microencapsul 7:25–39

    Article  CAS  Google Scholar 

  6. Freiberg S, Zhu XX (2004) Polymer microspheres for controlled drug release. Int J Pharm 282:1–18

    Article  CAS  Google Scholar 

  7. Faisant N, Akiki J, Siepmann F, Benoit JP, Siepmann J (2006) Effects of the type of release medium on drug release from PLGA-based microparticles: experiment and theory. Int J Pharm Sci 314:189–197

    Article  CAS  Google Scholar 

  8. Fournier E, Passirani C, Montero-Menei CN, Benoit JP (2003) Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials 24:3311–3331

    Article  CAS  Google Scholar 

  9. Ravivarapu HB, Lee H, De Luca PP (2000) Enhancing initial release of peptide from poly(d, l-lactide-co-glycolide) (PLGA) microspheres by addition of a porosigen and increasing drug load. Pharm Dev Technol 5:287–296

    Article  CAS  Google Scholar 

  10. Ravivarapu HB, Burton K, De Luca PP (2000) Polymer and microsphere blending to alter the release of a peptide from PLGA microspheres. Eur J Pharm Biopharm 50:263–270

    Article  CAS  Google Scholar 

  11. Iwata M, McGinity JW (1993) Dissolution, stability, and morphological properties of conventional and multiphase poly(d,l-lactico-glycolic acid) microspheres containing water-soluble compounds. Pharmacol Res 10:1219–1227

    Article  CAS  Google Scholar 

  12. Boury F, Marchais H, Benoit JP, Proust JE (1997) Surface characterization of poly(a-hydroxy acid) microspheres prepared by a solvent evaporation/extraction process. Biomaterials 18:125–136

    Article  CAS  Google Scholar 

  13. Dinarvand R, Moghadam SH, Sheikhi A, Atyabi F (2005) Effect of surfactant HLB and different formulation variables on the properties of poly-d,l-lactide microspheres of naltrexone prepared by double emulsion technique. J Microencapsul 22:139–151

    Article  CAS  Google Scholar 

  14. Tong J, Nakajima M, Nabetani H, Kikuchi Y (2000) Surfactant effect on production of monodispersed microspheres by microchannel emulsification method. J Surf Deterg 3:285–293

    Article  CAS  Google Scholar 

  15. Zhua Y, Zhanga G, Yanga H, Honga X (2005) Influence of surfactants on the parameters of polylactide nanocapsules containing insulin. J Surf Deterg 8:353–358

    Article  Google Scholar 

  16. Garti N, Aserin A (1996) Double emulsions stabilized by macromolecular surfactants. Adv Colloid Interface Sci 65:37–69

    Article  CAS  Google Scholar 

  17. Layre AM, Gref R, Richard J, Requier D, Chacun H, Appel M, Domb AJ, Couvreur P (2005) Nanoencapsulation of a crystalline drug. Int J Pharm 298:323–327

    Article  CAS  Google Scholar 

  18. Bragagni M, Beneitez C, Martín C, Hernán Pérez de la Ossa D, Mura PA, Gil-Alegre ME (2013) Selection of PLA polymers for the development of injectable prilocaine controlled release microparticles: usefulness of thermal analysis. Int J Pharm 441: 468– 475

    Google Scholar 

  19. Delgado MB, Otero FJ, Blanco J (1997) Heterogeneous and dispersed systems. In: Villa Jato JL (ed.) Pharmaceutical Technology vol I. Ed. Síntesis, Madrid, p 283

  20. Lareo M, Torres AI, Gil-Alegre ME (2005) Extraction and determination by liquid chromatography and spectrophotometry of naloxone in microparticles for drug-addiction treatment. J Sep Sci 28:2086–2093

    Article  Google Scholar 

  21. De La Rosa A, Heux L, Cavaillé JY (2000) Secondary relaxations in poly(allyl-alcohol), PAA, and poly(vinyl alcohol), PVA. Part I. Mechanical relaxations compared with mechanical behavior of cellulose and dextran in the presence of polar solvent. Polymer 41:7547–7557

    Article  Google Scholar 

  22. Blanco-Prieto MJ, Fattal E, Gulik A, Dedieu JC, Roques BP, Couvreur P (1997) Characterization and morphological analysis of a cholecystokinin derivative peptide-loaded poly(lactide-co-glycolide) microspheres prepared by a water-in-oil-in-water emulsion solvent evaporation method. J Control Release 43:81–87

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially funded by a grant of the Complutense University UCM-BSCH to the research group 910939.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Esther Gil-Alegre.

About this article

Cite this article

Benéitez, M.C., Espada, J.I., Fernandes, D. et al. Influence of Surfactant on the Characteristics of W1/O/W2-Microparticles. J Surfact Deterg 17, 11–18 (2014). https://doi.org/10.1007/s11743-013-1505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-013-1505-x

Keywords

Navigation