Skip to main content
Log in

Micellization Studies of Dicationic Gemini Surfactants (m-2-m Type) in the Presence of Various Counter- and Co-Ions

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Salts have the ability to influence the water activity and self-association of ionic micelles. In the present case, gemini surfactants; ethanediyl-α,ω-bis(dimethyl alkyl ammonium bromide) (referred to as m-2-m, m = 10, 12, 14) are synthesized and their micellization study in aqueous medium in presence of monovalent inorganic (NaBr, NaNO3, NaCl, KCl, LiCl) and organic salts (NaTos, NaBenz, NaSal) at 303 K is systematically investigated by conductometric and tensiometric methods. All the salts have the tendency to lower the critical micelle concentration of the surfactants. The effect of inorganic salts on the micellization properties has been found to obey the Hofmeister series. Organic salts reduce the CMC more effectively as compared to inorganic salts. The theoretical models of Rubingh and Rosen have been used to compare the results and obtain the interaction parameters, minimum area per molecule, surface excess, mixed micelle composition, activity coefficients and free energies of micellization/adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley Interscience, New York

    Book  Google Scholar 

  2. Rosen MJ, Tracy DJ (1998) Gemini surfactants. J Surf Deterg 1:547–554

    Article  CAS  Google Scholar 

  3. Zana R (1998) In: Holmberg K (ed) Novel surfactants. Marcel Dekker, New York

  4. Zana R, Benrraou M, Rueff R (1991) Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 7:1072–1075

    Article  CAS  Google Scholar 

  5. Zana R (2002) Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv Colloid Interface Sci 97:205–253

    Article  CAS  Google Scholar 

  6. You Y, Zhao J, Jiang R, Cao J (2009) Strong effect of NaBr on self-assembly of quaternary ammonium gemini surfactants at air/water interface and in aqueous solution studied by surface tension and fluorescence techniques. Colloid Polym Sci 287:839–846

    Article  CAS  Google Scholar 

  7. De S, Aswal VK, Goyal PS, Bhattacharya S (1996) Role of spacer chain length in dimeric micellar organization. Small angle neutron scattering and fluorescence studies. J Phys Chem 100:11664–11671

    Article  CAS  Google Scholar 

  8. Han L, Chen H, Luo P (2004) Viscosity behaviour of cationic gemini surfactants with long alkyl chains. Surf Sci 564:141–148

    Article  CAS  Google Scholar 

  9. Zana R, Talmon Y (1993) Dependence of aggregate morphology on structure of dimeric surfactants. Nature 362:228–230

    Article  CAS  Google Scholar 

  10. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes. Wiley, New York

    Google Scholar 

  11. Wennerstrom H, Lindman B (1980) Micelles. Amphiphile aggregation in aqueous solution. Top Curr Chem 87:1–87

    Article  Google Scholar 

  12. Zana R (1987) Surfactant solutions: new methods of investigation. Dekker, New York

    Google Scholar 

  13. Israelachvili JN (1992) Intermolecular and surface forces. Academic, London

    Google Scholar 

  14. Hofmeister F (1888) About the science of the effect of salts. Arch Exp Pathol Pharmakol 24:247–260

    Google Scholar 

  15. Romsted L, Yao J (1996) Arenediazonium salts: new probes of the interfacial compositions of association colloids. 4. 1–3 Estimation of the hydration numbers of aqueous hexaethylene glycol monododecyl ether, C12E6. Micelles by chemical trapping. Langmuir 12:2425–2432

    Article  CAS  Google Scholar 

  16. Romsted L (2007) Do amphiphile aggregate morphologies and interfacial compositions depend primarily on interfacial hydration and ion-specific interactions? The Evidence from chemical trapping. Langmuir 23:414–424

    Article  CAS  Google Scholar 

  17. Brady JE, Evans DF, Kachar B, Ninham BW (1984) Spontaneous vesicles. J Am Chem Soc 106:4279–4280

    Article  CAS  Google Scholar 

  18. Moroi Y, Murata Y, Fukuda Y, Kido Y, Seto W, Tanaka M (1992) Solubility and micelle formation of bolaform-type surfactants: hydrophobic effect of counterion. J Phys Chem 96:8610–8613

    Article  CAS  Google Scholar 

  19. Bijma K, Engberts J (1997) Effect of counterions on properties of micelles formed by alkylpyridinium surfactants. 1. Conductometry and 1H-NMR chemical shifts. Langmuir 13:4843–4849

    Article  CAS  Google Scholar 

  20. Debnath S, Dasgupta A, Mitra R, Das P (2006) Effect of counterions on the activity of lipase in cationic water-in-oil microemulsions. Langmuir 22:8732–8740

    Article  CAS  Google Scholar 

  21. Achouri MEl, Bensouda Y, Gouttaya HM, Nciri B, Perez L, Infante MR (2001) Gemini surfactants of the type 1,2-Ethanediylbis-(dimethylalkylammonium bromide). Tenside Surf Deterg 38:208–215

  22. Wattebled L, Laschewsky A (2007) Effects of organic salt additives on the behavior of dimeric (“Gemini”) surfactants in aqueous solution. Langmuir 23:10044–10052

    Article  CAS  Google Scholar 

  23. Jiang L, Peng Y, Yan Y, Deng M, Wang Y (2004) Micellization of cationic gemini surfactants with various counterions and their interaction with DNA in aqueous solution. J Phys Chem B 108:15385–15391

    Article  CAS  Google Scholar 

  24. Manet S, Karpichev Y, Bassani D, Ahmad RK, Oda R (2010) Counteranion effect on micellization of cationic gemini surfactants 14-2-14: hofmeister and other counterions. Langmuir 26:10645–10656

    Article  CAS  Google Scholar 

  25. Khan F, Siddiqui US, Khan IA, Kabir-ud-Din (2012) Physicochemical study of cationic gemini surfactant butanediyl-1,4-bis(dimethyldodecylammonium bromide) with various counterions in aqueous solution. Colloid Surf A 394:46–56

    Article  CAS  Google Scholar 

  26. Muller N, Birkhahn RH (1968) Investigation of micelle structure by fluorine magnetic resonance. II. Effects of temperature changes, added electrolyte, and counterion size. J Phys Chem 72:583–588

    Article  CAS  Google Scholar 

  27. Paul BC, Islam SS, Ismail K (1998) Effect of acetate and propionate co-ions on the micellization of sodium dodecyl sulfate in water. J Phys Chem B 102:7807–7812

    Article  CAS  Google Scholar 

  28. Zana R, Levy H (1997) Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) surfactants (dimeric surfactants) Part 6. CMC of the ethanediyl-1,2-bis(dimethylalkylammonium bromide) series. Colloid Surf A 127:229–232

    Article  CAS  Google Scholar 

  29. Sun Y, Feng Y, Dong H, Chen Z, Han L (2007) Synthesis and aqueous solution properties of homologous gemini surfactants with different headgroups. Central Eur J Chem 5:620–634

    Article  CAS  Google Scholar 

  30. Kunz W, Nostro PLo, Ninham BW (2004) The present state of affairs with Hofmeister effects. Curr Opin Colloid Interface Sci 9:1–18

  31. Vlachy N, Cwiklik BJ, Vácha R, Touraud D, Jungwirth P, Kunz W (2009) Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv Colloid Interface Sci 146:42–47

    Article  CAS  Google Scholar 

  32. Vlachy N, Drechsler M, Touraud D, Kunz W (2009) Anion specificity influencing morphology in catanionic surfactant mixtures with an excess of cationic surfactant. C R Chim 12:30–37

    Article  CAS  Google Scholar 

  33. Nightangle ER Jr (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63:1381–1387

    Article  Google Scholar 

  34. Mukerjee P, Karematsu K, Obawauchi M, Sugihara G (1985) Effect of temperature on the electrical conductivity and the thermodynamics of micelle formation of sodium perfluorooctanoate. J Phys Chem 89:5308–5312

    Article  CAS  Google Scholar 

  35. Rodriguez JR, Perez AG, Castillo JLD, Czapkiewicz J (2002) Thermodynamics of micellization of alkyldimethylbenzylammonium chlorides in aqueous solutions. J Colloid Interface Sci 250:438–443

    Article  CAS  Google Scholar 

  36. Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley, New York, p 215

  37. Naqvi AZ, Rub MA, Kabir-ud-Din (2011) Effects of pharmaceutical excipients on cloud points of amphiphilic drugs. J Colloid Interface Sci 361:42–48

    Article  CAS  Google Scholar 

  38. Rao URK, Manohar C, Valaulikar BS, Iyer RM (1987) Micellar chain model for the origin of the viscoelasticity in dilute surfactant solutions. J Phys Chem 91:3286–3291

    Article  CAS  Google Scholar 

  39. Laughlin RG (1981) HLB from a thermodynamic perspective. J Soc Cosmet Chem 32:371–392

    CAS  Google Scholar 

  40. Cacace MG, Landau EM, Ramsden JJ (1997) The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys 30:241–277

    Article  CAS  Google Scholar 

  41. Collins KD (2004) Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34:300–311

    Article  CAS  Google Scholar 

  42. Haldar J, Aswal VK, Goyal PS, Bhattacharya S (2004) Aggregation properties of novel cationic surfactants with multiple pyridinium headgroups. Small-angle neutron scattering and conductivity studies. J Phys Chem B 108:11406–11411

    Article  CAS  Google Scholar 

  43. Chattoraj DK, Birdi KS (1984) Adsorption and the Gibbs surface excess. Plenum, New York

    Book  Google Scholar 

  44. Ananda K, Yadav OP, Singh PP (1991) Studies on the surface and thermodynamic properties of some surfactants in aqueous and water +1, 4-dioxane solutions. Colloids Surf 55:345–348

    Article  Google Scholar 

  45. Evans DF, Wennestorm H (1994) The colloidal domain: where physics, chemistry and biology meet. VCH, New York

    Google Scholar 

  46. Rosen MJ, Cohen AW, Dahanayake M, Hua X (1982) Relationship of structure to properties in surfactants. 10. Surface and thermodynamic properties of 2-dodecyloxypoly(ethenoxyethanol)s, C12H25(OC2H4)xOH, in aqueous solution. J Phys Chem 86:541–545

    Article  CAS  Google Scholar 

  47. Rubingh DN (1979) Mixed micelle solutions. In: Mittal KL (ed) Solution Chemistry of Surfactants, vol 1. Plenum, New York

  48. Rosen MJ (1998) Molecular interaction and the quantitative prediction of synergism in the mixtures of surfactants. Prog Colloid Polym Sci 109:35–41

    Article  CAS  Google Scholar 

Download references

Acknowledgments

USS and JA acknowledge CST-UP, Lucknow (CST-790) and UGC, respectively, for providing financial assistance. KU is grateful for UGC-BSR Faculty Fellowship award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Umme Salma Siddiqui or Wajid Husain Ansari.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 163 kb)

About this article

Cite this article

Aslam, J., Siddiqui, U.S., Ansari, W.H. et al. Micellization Studies of Dicationic Gemini Surfactants (m-2-m Type) in the Presence of Various Counter- and Co-Ions. J Surfact Deterg 16, 693–707 (2013). https://doi.org/10.1007/s11743-013-1453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-013-1453-5

Keywords

Navigation