Skip to main content
Log in

Effect of Long-Chain Length on the Surface Activities of Zwitterionic Imidazolium-Based Surfactants: 1-Carboxymethyl-3-alkylimidazolium Inner Salts

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Zwitterionic imidazolium-based surfactants, namely 1-carboxymethyl-3-alkyl imidazolium inner salts (C n imCM, n = 10, 12, and 14), were synthesized. Their molecule structures were characterized by means of electrospray ionization mass spectrometry (ESI–MS), 1H nuclear magnetic resonance (1H NMR) and elemental analysis. Compared to the structurally related N-alkylbetaines (C n H2n+1N+(CH3)2CH2COO), the CMCs of C n imCM are smaller than those of N-alkylbetaines. The effect of the long-chain length on the typical physicochemical properties of C n imCM was studied. It is found that the lengthening of the long-chain enhances the surface activity of C n imCM. The tendency for C n imCM surfactants is similar to the case of the structurally related traditional zwitterionic N-alkylbetaines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Galgano PD, El Secoud OA (2010) Micellar properties of surface active ionic liquids: a comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationic surfactants. J Colloid Interface Sci 345:1–11

    Article  CAS  Google Scholar 

  2. Merrigan TL, Bates ED, Dorman SC Jr, Davis JH (2000) New fluorous ionic liquids function as surfactants in conventional room-temperature ionic liquids. Chem Commun 20:2051–2052

    Article  Google Scholar 

  3. Miskolczy Z, Sebők-Nagy K, Biczók L, Göktürk S (2004) Aggregation and micelle formation of ionic liquids in aqueous solution. Chem Phys Lett 400:296–300

    Article  CAS  Google Scholar 

  4. Baltazar QQ, Chandawalla J, Sawyer K, Anderson JL (2007) Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids. Colloids Surf A 302:150–156

    Article  CAS  Google Scholar 

  5. Jungnickel C, Łuczak J, Ranke J, Fernández JF (2008) Micelle formation of imidazolium ionic liquids in aqueous solution. Colloids Surf A 316:278–284

    Article  CAS  Google Scholar 

  6. Łuczak J, Hupka J, Thöming J, Jungnickel C (2008) Self-organization of imidazolium ionic liquids in aqueous solution. Colloids Surf A 329:125–133

    Article  Google Scholar 

  7. Blesic M, Marques MH, Plechkova NV, Seddon KR, Rebelo LPN, Lopes A (2007) Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem 9:481–490

    Article  CAS  Google Scholar 

  8. Smirnova NA, Vanin AA, Safonova EA, Pukinsky IB, Anufrikov YA, Makarov AL (2009) Self-assembly in aqueous solutions of imidazolium ionic liquids and their mixtures with an anionic surfactant. J Colloid Interface Sci 336:793–802

    Article  CAS  Google Scholar 

  9. Goodchild I, Collier L, Millar SL, Prokeš I, Lord JCD, Butts CP, Bowers J, Webster JRP, Heenan RK (2007) Structural studies of the phase, aggregation and surface behavior of 1-alkyl-3-methylimidazolium halide + water mixtures. J Colloid Interface Sci 307:455–468

    Article  CAS  Google Scholar 

  10. Inoue T, Ebina H, Dong B, Zheng L (2007) Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J Colloid Interface Sci 314:236–241

    Article  CAS  Google Scholar 

  11. El Seoud OA, Pires PAR, Abdel-Moghny T, Bastos E (2007) Synthesis and micellar properties of surface-active ionic liquids: 1-alkyl-3-methylimidazolium chlorides. J Colloid Interface Sci 313:296–304

    Article  Google Scholar 

  12. Ao M, Xu G, Zhu Y, Bai Y (2008) Synthesis and properties of ionic liquid-type Gemini imidazolium surfactants. J Colloid Interface Sci 326:490–495

    Article  CAS  Google Scholar 

  13. Thomaier S, Kunz W (2007) Aggregates in mixtures of ionic liquids. J Mol Liq 130:104–107

    Article  CAS  Google Scholar 

  14. Zhao Y, Chen X, Wang X (2009) Liquid crystalline phases self-organized from a surfactant-like ionic liquid C16mimCl in ethylammonium nitrate. J Phys Chem B 113:2024–2030

    Article  CAS  Google Scholar 

  15. Blesic M, Lopes A, Melo E, Petrovski Z, Plechkova NV, Lopes JNC, Seddon KR, Rebelo LPN (2008) On the self-aggregation and fluorescence quenching aptitude of surfactant ionic liquids. J Phys Chem B 112:8645–8650

    Article  CAS  Google Scholar 

  16. Zhao Y, Gao S, Wang J, Tang J (2008) Aggregation of ionic liquids [C n mim]Br (n = 4,6,8,10,12) in D2O: a NMR study. J Phys Chem B 112:2031–2039

    Article  CAS  Google Scholar 

  17. Gaillon L, Sirieix-Plenet J, Letellier P (2004) Volumetric study of binary solvent mixtures constituted by amphiphilic ionic liquids at room temperature (1-alkyl-3-methylimidazolium bromide) and water. J Solut Chem 33:1333–1347

    Article  CAS  Google Scholar 

  18. Dong B, Li N, Zheng L, Yu L, Inoue T (2007) Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 23:4178–4182

    Article  CAS  Google Scholar 

  19. Wang J, Wang H, Zhang S, Zhang H, Zhao Y (2007) Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [C n mim]Br (n = 4,6,8,10,12) in aqueous solutions. J Phys Chem B 111:6181–6188

    Article  CAS  Google Scholar 

  20. Pino V, Yao C, Anderson J (2009) Micellization and interfacial behavior of imidazolium-based ionic liquids in organic solvent-water mixtures. J Colloid Interface Sci 333:548–556

    Article  CAS  Google Scholar 

  21. Łuczak J, Jungnickel C, Joskowska M, Thöming J, Hupka J (2009) Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions. J Colloid Interface Sci 336:111–116

    Article  Google Scholar 

  22. Wang H, Wang J, Zhang S, Xuan X (2008) Structural effects of anions and cations on the aggregation behavior of ionic liquids in aqueous solution. J Phys Chem B 112:16682–16689

    Article  CAS  Google Scholar 

  23. Rebelo LPN, Lopes JNC, Esperança JMSS, Guedes HJR, Łachwa J, Najdanovic-Visak V, Visak ZP (2007) Accounting for the unique, doubly dual nature of ionic liquids from a molecular thermodynamic and modeling standpoint. Acc Chem Res 40:1114–1121

    Article  CAS  Google Scholar 

  24. Ao M, Xu G, Pang J, Zhao T (2009) Comparison of aggregation behaviors between ionic liquid-type imidazolium Gemini surfactant [C12-4-C12im]Br2 and its monomer [C12mim]Br on silicon wafer. Langmuir 25:9721–9727

    Article  CAS  Google Scholar 

  25. Ding YS, Zha M, Zhang J, Wang SS (2007) Synthesis, characterization and properties of geminal imidazolium ionic liquids. Colloid Surf A 298:201–205

    Article  CAS  Google Scholar 

  26. Liu Y, Yu L, Zhang S, Yuan J, Shi L, Zheng L (2010) Dispersion of multiwalled carbon nanotubes by ionic liquid-type Gemini imidazolium surfactants in aqueous solution. Colloid Surf A 359:66–70

    Article  CAS  Google Scholar 

  27. Li XW, Gao YA, Liu J, Zheng LQ, Chen B, Wu LZ, Tung CH (2010) Aggregation behavior of a chiral long-chain ionic liquid in aqueous solution. J Colloid Interface Sci 343:94–101

    Article  CAS  Google Scholar 

  28. Liu XF, Dong LL, Fang Y (2011) Synthesis and self-aggregation of a hydroxyl-functionalized imidazolium-based ionic liquid surfactant in aqueous solution. J Surfact Deterg 14:203–210

    Article  CAS  Google Scholar 

  29. Tariq M, Podgoršek A, Ferguson JL, Lopes A, Gomes MFC, Pádua AAH, Rebelo LPN, Lopes JNC (2011) Characteristics of aggregation in aqueous solutions of dialkylpyrrolidinium bromides. J Colloid Interface Sci 360:606–616

    Article  CAS  Google Scholar 

  30. Vaghela NM, Sastry NV, Aswal VK (2011) Surface active and aggregation behavior of methylimidazolium-based ionic liquids of type [Cnmim][X], n = 4, 6, 8 and [X] = Cl, Br, and I in water. Colloid Polym Sci 289:309–322

    Article  CAS  Google Scholar 

  31. Dong B, Zhao X, Zheng L, Zhang J, Li N, Inoue T (2008) Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: micellization and characterization of micelle microenvironment. Colloids Surf A 317:666–672

    Article  CAS  Google Scholar 

  32. Xie Z, Feng Y (2010) Synthesis and properties of alkylbetaine zwitterionic Gemini surfactants. J Surfact Deterg 13:51–57

    Article  CAS  Google Scholar 

  33. Qi L, Fang Y, Wang Z, Ma N, Jiang L, Wang Y (2008) Synthesis and physicochemical investigation of long alkylchain betaine zwitterionic surfactant. J Surf Deterg 11:55–59

    Article  CAS  Google Scholar 

  34. Nong L, Xiao C, Zhong Z (2011) Physicochemical properties of novel phosphobetaine zwitterionic surfactants and mixed systems with an anionic surfactant. J Surf Deterg 14:433–438

    Article  CAS  Google Scholar 

  35. Zerkowski JA, Solaiman DKY, Ashby RD, Foglia TA (2006) Head group-modified sophorolipids: synthesis of new cationic, zwitterionic, and anionic surfactants. J Surf Deterg 9:57–62

    Article  CAS  Google Scholar 

  36. Qu G, Cheng J, Wei J, Yu T, Ding W, Luan H (2011) Synthesis, characterization and surface properties of series sulfobetaine surfactants. J Surf Deterg 14:31–35

    Article  CAS  Google Scholar 

  37. El-Aila HJY (2005) Effect of urea and salt on micelle formation of zwitterionic surfactants. J Surf Deterg 8:165–168

    Article  CAS  Google Scholar 

  38. Tondo DW, Leopoldino EC, Souza BS, Micke GA, Costa ACO, Fiedler HD, Bunton CA, Nome F (2010) Synthesis of a new zwitterionic surfactant containing an imidazolium ring: evaluating the chameleon-like behavior of zwitterionic micelles. Langmuir 26:15754–15760

    Article  CAS  Google Scholar 

  39. Liu XF, Dong LL, Fang Y (2011) A novel zwitterionic imidazolium-based ionic liquid surfactant: 1-carboxymethyl-3-dodecy-imidazolium inner Salt. J Surf Deterg 14:497–504

    Article  CAS  Google Scholar 

  40. Harkins WD, Brown F (1919) The determination of surface tension (free surface energy), and the weight of falling drops: the surface tension of water and benzene by the capillary height method. J Am Chem Soc 41:499–524

    Article  CAS  Google Scholar 

  41. Mohamed A, Trickett K, Chin SY, Cummings S, Sagisaka M, Hudson L, Nave S, Dyer R, Rogers SE, Heenan RK, Eastoe J (2010) Universal surfactant for water, oils, and CO2. Langmuir 26:13861–13866

    Article  CAS  Google Scholar 

  42. Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. John Wiley & Sons Inc, New Jersey, pp 82–130

    Book  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Qing Lan Project (2010), the Fundamental Research Funds for the Central Universities (JUSRP211A10), the open fund of Zhejiang Zanyu Technology Co., Ltd. and the Jiangsu Key Laboratory of Fine Petrochemicals (KF0903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-feng Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 71 kb)

About this article

Cite this article

Ni, Bq., Hu, J., Liu, Xf. et al. Effect of Long-Chain Length on the Surface Activities of Zwitterionic Imidazolium-Based Surfactants: 1-Carboxymethyl-3-alkylimidazolium Inner Salts. J Surfact Deterg 15, 729–734 (2012). https://doi.org/10.1007/s11743-012-1399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-012-1399-z

Keywords

Navigation