Skip to main content
Log in

Contrasting the Effects of Hydrophobicity and Counterion Size on Anionic Wormlike Micelle Growth

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Rheological measurements were performed to understand the effect of benzyltrimethyl ammonium bromide (BTAB) and NaBr on the growth of wormlike micelles formed by sodium oleate (NaOA). Both salts can make the micellar solution viscoelastic, and the rheological responses verify the formation of wormlike micelles. The viscoelastic solution follows the Maxwell model of a single stress relaxation mode in the low-frequency region. In comparison, the BTAB system exhibits stronger viscoelasticity than the NaBr system at constant salt concentration, but the critical overlapping concentration shows no significant difference; less BTAB can induce the solution to be more viscous than NaBr, but the viscosity maximum of the BTAB system is remarkably lower than that of NaBr at fixed NaOA content. The puzzling result is attributed to the effect of the composition on the packing parameter. In addition, it is shown that the zero-shear viscosity of the two salt systems decreases upon heating, following the Arrhenius mode well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cates ME, Candau SJ (1990) Statics and dynamics of worm-like surfactant micelles. J Phys Condens Matter 2:6869–6892

    Article  CAS  Google Scholar 

  2. Kefi S, Lee J, Pope TL, Sullivan P, Nelson E, Hernandez AN, Olsen T, Parlar M, Powers B, Roy A, Wilson A, Twynam A (2004) Oilfield Rev 16:10–23

    CAS  Google Scholar 

  3. Watkins C (2009) Chemically enhanced oil recovery stages a comeback. Inform 11:682–685

    Google Scholar 

  4. Dalhaimer P, Engler AJ, Parthasarathy R, Discher DE (2004) Targeted worm micelles. Biomacromolecules 5:1714–1719

    Article  CAS  Google Scholar 

  5. Vlachy N, Merle C, Touraud D, Schmidt J, Talmon Y, Heilmann J, Kunz W (2008) Spontaneous formation of bilayers and vesicles in mixtures of single-chain alkyl carboxylates: effect of pH and aging and cytotoxicity studies. Langmuir 24:9983–9988

    Article  CAS  Google Scholar 

  6. Acharya DP, Kunieda H (2006) Wormlike micelles in mixed surfactant solution. Adv Colloid Interface Sci 123–126:401–413

    Article  Google Scholar 

  7. Aswal VK (2003) Effect of the hydrophobicity of aromatic counter ions on the structure of ionic micelles. J Phys Chem B 107:13323–13328

    Article  CAS  Google Scholar 

  8. Kunieda H, Horii M, Koyama M, Sakamoto K (2001) Solubilization of polar oils in surfactant self-organized structures. J Colloid Interface Sci 236:78–84

    Article  CAS  Google Scholar 

  9. Raghavan SR, Kaler EW (2001) Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 17:300–306

    Article  CAS  Google Scholar 

  10. Kalur GC, Raghavan SR (2005) Anionic wormlike micellar fluids that display cloud points: rheology and phase behavior. J Phys Chem B 109:8599–8604

    Article  CAS  Google Scholar 

  11. Benrraou M, Bales BL, Zana R (2003) Effect of the nature of the counterion on the properties of anionic surfactants. 1. cmc, ionization degree at the cmc and aggregation number of micelles of sodium, cesium, tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetrabutylammonium dodecyl sulfates. J Phys Chem B 107:13432–13440

    Article  CAS  Google Scholar 

  12. Han Y, Feng Y, Sun H, Li Z, Han Y, Wang H (2011) Wormlike micelles formed by sodium erucate in the presence of a tetraalkylammoniumhydrotrope. J Phys Chem B 115:6893–6902

    Article  CAS  Google Scholar 

  13. Nakamura K, Shikata T (2006) Threadlike micelle formation of anionic surfactants in aqueous solution. Langmuir 22:9853–9859

    Article  CAS  Google Scholar 

  14. Bautista F, Soltero JFA, Macías ER, Puig JE (2002) Irreversible thermodynamics approach and modeling of shear-banding flow of wormlike micelles. J Phys Chem B 106:13018–13026

    Article  CAS  Google Scholar 

  15. Granek R, Cates ME (1992) Stress relaxation in living polymers: results from a Poisson renewal model. J Chem Phys 96:4758–4767

    Article  CAS  Google Scholar 

  16. Cates ME (1987) Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 20:2289–2296

    Article  CAS  Google Scholar 

  17. Hassan PA, Yakhmi JV (2000) Growth of cationic micelles in the presence of organic additives. Langmuir 16:7187–7191

    Article  CAS  Google Scholar 

  18. Hassan PA, Candau SJ, Kern F et al (1998) Rheology of worms with varying hydrophobicity of the counterion. Langmuir 14:6025–6029

    Article  CAS  Google Scholar 

  19. Candau SJ, Khatory A, Lequeux F, Kern F (1993) Rheological behaviour of wormlike micelles-effect of salt content. J Phys IV 3:197–209

    CAS  Google Scholar 

  20. Oelschlaeger C, Suwita P, Willenbacher N (2010) Effect of counterion binding efficiency on structure and dynamics of wormlike micelles. Langmuir 26:7045–7053

    Article  CAS  Google Scholar 

  21. Narayanan J, Manohar C, Kern F, Lequeux F, Candau SJ (1997) Linear viscoelasticity of wormlike micellar solutions found in the vicinity of a vesicle–micelle transition. Langmuir 13:5235–5243

    Article  CAS  Google Scholar 

  22. Croce V, Cosgrove T, Maitland G, Hughes T, Karlsson G (2003) Rheology, cryogenic transmission electron spectroscopy and small-angle neutron scattering of highly viscoelastic wormlike micellar solutions. Langmuir 19:8536–8541

    Article  CAS  Google Scholar 

  23. Fischer P, Rehage H (1997) Rheological master curves of viscoelastic surfactant solutions by varying the solvent viscosity and temperature. Langmuir 13:7012–7020

    Article  CAS  Google Scholar 

  24. Ziserman L, Abezgauz L, Ramon O, Raghavan SR, Danino D (2009) Imperfect dissolution in nonionic block copolymer and surfactant mixtures. Langmuir 25:10483–10489

    Article  CAS  Google Scholar 

  25. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans 2(72):1525–1568

    Google Scholar 

  26. Tung S, Huang Y, Raghavan SR (2007) Contrasting effects of temperature on the rheology of normal and reverse wormlike micelles. Langmuir 23:372–376

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with the financial support of grants from the National Natural Science Foundation of China and CAAC (No. 60939001 and No. 60979020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhou.

About this article

Cite this article

Han, Y., Wei, Y., Wang, H. et al. Contrasting the Effects of Hydrophobicity and Counterion Size on Anionic Wormlike Micelle Growth. J Surfact Deterg 16, 139–145 (2013). https://doi.org/10.1007/s11743-012-1364-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-012-1364-x

Keywords

Navigation