Skip to main content
Log in

Metallosurfactants of Cu(II) and Fe(III) complexes as catalysts for the destruction of paraoxon

  • Published:
Journal of Surfactants and Detergents

Abstract

Two micellized Cu(II) and Fe(III) ion complexes of octadecyl diethylene tri-1-amide are used as nucleophilic reagents in the cleavage of the phosphate ester paraoxon. These complexes form metallomicelles, which coordinate with the paraoxon phosphorous (chemically similar to the nerve agent sarin). Association colloids (e.g., micelles, microemulsions, or vesicles) increase the rate of the nucleophilic reaction. Hence, it is reasonable to examine the hydrolysis process of paraoxon in aqueous metallomicelles. As micelles form and incorporate reactants, the rate constant should change; therefore, the rate constant should be affected by the critical micelle concentrations (CMC) of Cu(II) and Fe(III) complexes. The concentrations tested were the CMC value, two values lower, and two values higher. The CMC was found to be the most reactive concentration. The kinetic data (half-life times) for paraoxon degradation were 6.1 and 28.8 min in the presence of the Cu(II) and the Fe(III) metallomicelle complex, respectively. The stability constants of the metal complexes showed large values that denoted significant stability for both complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CMC:

critical micelle concentration

FTIR:

Fourier transform infrared

References

  1. Menger, F.M., L.H. Gan, E. Johnson, and D.H. Durst, Phosphate Ester Hydrolysis Catalyzed by Metallomicelles, J. Am. Chem. Soc. 109:2800 (1987).

    Article  CAS  Google Scholar 

  2. Scrimin, P., G. Ghirlanda, P. Tecilla, and R.A. Moss, Comparative Reactivities of Phosphate Ester Cleavages by Metallomicelles, Langmuir 12:6235 (1996).

    Article  CAS  Google Scholar 

  3. Mancin, F., P. Tecilla, and U. Tonellato, Metallomicelles Made of Ni(II) and Zn(II) Complexes of 2-Pyridinealdoxime-Based Ligands as Catalyst of the Cleavage of Carboxylic Acid Esters, Langmuir 16:227 (2000).

    Article  CAS  Google Scholar 

  4. Zheng, F., C.-G. Zhan, and R.L. Ornstein, Theoretical Studies of Reaction Pathways and Energy Barriers for alkaline Hydrolysis of Phosphotriesterase Substrates Paraoxon and Related Toxic Phosphofluoridate Nerve Agents, J. Chem. Soc. Perkin. Trans. 2:2355 (2001).

    Google Scholar 

  5. Shaw, R.W., and M.J. Cullinane, Destruction of Military Toxic Materials, in Encyclopedia of Environmental Analysis and Remediation, edited by R.A. Myers, John Wiley & Sons, New York, 1998, Vol. 5, p. 2821.

    Google Scholar 

  6. Moss, R.A., and Y. Ihara, Cleavage of Phosphate Esters by Hydroxyl-Functionalized Micellar and Vesicular Reagents, J. Org. Chem. 48:588 (1983).

    Article  CAS  Google Scholar 

  7. Siqing, C., Z. Xiancheng, M. Xiangguang, and Y. Xiaoqi, Metallomicellar Catalysis Hydrolysis of p-Nitrophenyl Picolinate Catalyzed by Copper(II), Nickel(II), and Zinc(II) Complexes of Long Alkyl Pyridine Ligands in Micellar Solution, J. Colloid Interface Sci. 224:333 (2000).

    Article  CAS  Google Scholar 

  8. Koča, J., C.-G. Zhan, R.C. Rittenhouse, and R.L. Ornstein, Mobility of the Active Site Bound Paraoxon and Sarin in Zinc-Phosphotriesterase by Molecular Dynamics Simulation and Quantum Chemical Calculation, J. Am. Chem. Soc. 123:817 (2001).

    Article  CAS  Google Scholar 

  9. Kimura, E., H. Hashimoto, and T. Koike, Hydrolysis of Lipophilic Esters Catalyzed by a Zinc(II) Complex of a Long Alkyl-Pendant Macrocyclic Tetraamine in Micellar Solution, J. Am. Chem. Soc. 118:10963 (1996).

    Article  CAS  Google Scholar 

  10. Yang, Y.-C., Chemical Detoxification of Nerve Agent VX, Acc. Chem. Res. 32:109 (1999).

    Article  CAS  Google Scholar 

  11. Bunton, C.A., Chemical Warfare, in Macmillan Encyclopedia of Chemistry, edited by J.J. Lagowski, Simon & Schuster/Macmillan, New York, 1997, Vol. 1, p. 343.

    Google Scholar 

  12. Defrank, J.J., Organophosphorous Cholinesterase Inhibitors: Detoxification by Microbial Enzymes, in Applications of Enzyme Biotechnology, edited by J.W. Kelly and T.O. Baldwin, Plenum Press, New York, 1991, p. 165.

    Google Scholar 

  13. Heilbronn-Wikstrom, E., Phosphorylated Cholinesterase: Their Formation Reactions and Hydrolysis, Sven. Kem. Tidskr. 77:598 (1965).

    Google Scholar 

  14. Moss, R.A., A.T. Kotchevar, B.D. Park, and B.D. Scrimin, Comparative Reactivities of Phosphotriesters Toward Iodosocarboxylates in Cationic Micelles, Langmuir 12:2200 (1996).

    Article  CAS  Google Scholar 

  15. Lion, C., J.P. Boukou-Poba, and M. Hedayatullah, Nouveaux décontaminants. Action du Monoperphtalate de Magnesium (MPPM) sur Quelques insecticides et toxiques de Guerre Organo Phosphorees ou Organosulfers, Phosphorus Sulfur Silicon Relat. Elem. 56:213 (1991).

    CAS  Google Scholar 

  16. Lion, C., M. Hedayatullah, P. Bauer, J.P. Boukou-Poba, and C. Charvy, Nouveaux décontaminants. Destruction de Toxiques organophosphorés ou Soufres par des Peracides Mono-, Bi- et Tricycliques saturés, Bull. Soc. Chim. Belg. 101:249 (1992).

    Article  CAS  Google Scholar 

  17. Moss, R.A., and H. Morales-Rojas, Kinetics of Cleavage of Thiophosphates and Phosphonothioates by Miceller Iodosocarboxylates and Copper Metallomicelles, Langmuir 16:6485 (2000).

    Article  CAS  Google Scholar 

  18. Bowers, J., M.J. Danks, D.W. Bruce, and R.K. Heenan, Surface and Aggregation Behavior of Aqueous Solutions of Ru(II) Metallosurfactants: 1. Micellization of [Ru(bipy)2(bipy′)][Cl]2 Complexes, Langmuir 19:292 (2003).

    Article  CAS  Google Scholar 

  19. Bowers, J., M.J. Danks, D.W. Bruce, and J.R.P. Webster, Surface and Aggregation Behavior of Aqueous Solutions of Ru(II) Metallosurfactants: 2. Adsorbed Films of [Ru(bipy)2(bipy′)][Cl]2 Complexes, Langmuir 19:299 (2003).

    Article  CAS  Google Scholar 

  20. Johnson, J.Y., Improvement in the Manufacture and Production of Wetting, Cleansing, Dispersing and Like Agents, British Patent 378,383 (1932).

    Google Scholar 

  21. Badawi, A.M., A.A. Hafiz, and H.A. Ibrahim, Catalytic Destruction of Malathion by Metallomicelle Layers, J. Surfact. Deterg. 6:239 (2003).

    Article  CAS  Google Scholar 

  22. Hafiz, A.A., M.Y. El Awadi, A.M. Badawi, and S.M. Mokhtar, Catalytic Destruction of Paraoxon by Metallomicelle Layers of Co(II) and Cr(III), J. Surfact. Deterg. 8:203 (2005).

    CAS  Google Scholar 

  23. Sawyer, D., W.E. Heineman, and J. Beebe, Chemistry Experiments for Instrumental Methods, John Wiley & Sons, New York, 1984, p. 4241.

    Google Scholar 

  24. Lee, J.D., Concise Inorganic Chemistry, 3rd edn., Van Nostrand Reinhold, London, 1983, p. 103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Hafiz.

About this article

Cite this article

Hafiz, A.A. Metallosurfactants of Cu(II) and Fe(III) complexes as catalysts for the destruction of paraoxon. J Surfact Deterg 8, 359–363 (2005). https://doi.org/10.1007/s11743-005-0369-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-005-0369-8

Key words

Navigation