Skip to main content
Log in

Contact angle of surfactant solutions on precipitated surfactant surfaces. II. Effects of surfactant structure, presence of a subsaturated surfactant, pH, and counterion/surfactant ratio

  • Published:
Journal of Surfactants and Detergents

Abstract

The contact angle of a saturated aqueous surfactant solution on the precipitate of that surfactant was measured by using the sessile drop method. The sodium and calcium salts of alkyl sulfates (C12, C14, and C18) had advancing contact angles higher than those of alkyl trimethylammonium bromides (C14, C16, and C18). The measured advancing contact angles for several surfactant solutions did not substantially change with varying surfactant/counterion ratios; therefore, the precipitating counterion concentration (e.g., water hardness) had little effect on the wettability. The contact angles of fatty acid (C12 and C16) solutions did not show any dependence on pH between a pH of 4 and 10. The contact angles of saturated calcium dodecanoate (CaC12) solutions containing a second subsaturated surfactant (sodium dodecyl sulfate: NaDS) decreased with increasing NaDS concentrations until reaching the critical micelle concentration of the surfactant mixture. These results show that the second suractant can act as a wetting agent in this saturated surfactant system. Application of Young’s equation to contact angles showed that the solid/liquid surface tension can change substantially with surfactant concentration and be important in addition to the liquid/vapor surface tension in reducing contact angles. Application of the Zisman equation results in a “critical” surface tension for the CaC12 or soap scum of 25.5 mN/m, which is comparable to difluoroethene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

γLV :

liquid/vapor interfacial tension

γSL :

solid/liquid interfacial tension

γSV :

solid/vapor interfacial tension

ϕ or ϕA :

advancing contact angle

C14TAB:

tetradecyl trimethylammonium bromide

C16TAB:

hexadecyl trimethylammonium bromide

C18TAB:

octadecyl trimethylammonium bromide

CaC12 :

calcium dodecanoate

CaDS:

calcium dodecyl sulfate

GMC:

critical micelle concentration

K sp :

solubility product constant

NaDS:

sodium dodecyl sulfate

References

  1. Oner, D., and T.J. McCarthy, Ultrahydrophobic Surfaces. Effect of Topography Length Scales on Wettability, Langmuir 16: 7777 (2000).

    Article  Google Scholar 

  2. Johnson, R.E., and R.H. Dettre, Wetting of Low-Energy Surfaces, in Wettability, edited by J.C. Berg, Marcel Dekker, New York, 1993, p. 1.

    Google Scholar 

  3. Hauthal, H.G., P. Jurges, L. Mohle, and U. Ohlerich, Synergism in the Wetting Properties of Ternary Surfactant Mixtures, J. Surfact. Detegr. 2:175 (1999).

    CAS  Google Scholar 

  4. Bahr, M.V., F. Tiberg, and B.V. Zhmud, Spreading Dynamics of Surfactant Solutions, Langmuir 15:7069 (1999).

    Article  Google Scholar 

  5. Guy, D.W., R.J. Crawford, and D.E. Mainwaring, The Wetting Behavior of Several Organic Liquids in Water on Coal Surfaces, Fuel 75:238 (1996).

    Article  CAS  Google Scholar 

  6. Shiao, S.Y., V. Chhabra, A. Patist, M.L. Free, P.D.T. Huibers, A. Gregory, S. Patel, and D.O. Shah, Chain Length Compatibility Effects in Mixed Surfactant Systems for Technological Applications, Adv. Colloid Interface Sci. 74:1 (1998).

    Article  CAS  Google Scholar 

  7. Alexandrova, L., and L. Grigorov, The Three-Phase Contact Parameters of Thin Water Films on Mineral Surfaces, Colloids Surf. 131:265 (1998).

    Article  CAS  Google Scholar 

  8. Chesters, A.K., A. Elyousfi, A.M. Cazabat, and S. Vilette, The Influence of Surfactants on the Hydrodynamics of Surface Wetting, J. Petrol. Sci. Eng. 20:217 (1998).

    Article  CAS  Google Scholar 

  9. Luner, P.E., S.R. Babu, and S.C. Mehta, Wettability of a Hydrophobic Drug by Surfactant Solutions, Int. J. Pharm. 128:29 (1996).

    Article  CAS  Google Scholar 

  10. Garti, N., and H. Zour, The Effect of Surfactants on the Crystalization and Polymorphic Transformation of Glutamic Acid, J. Cryst. Growth 172:486 (1997).

    Article  CAS  Google Scholar 

  11. Lin, C.H., N. Gabas, and J.P. Canselier, Prediction of Growth Morphology of Amino Acid Crystals in Solution I. α-Glycine, J. Cryst. Growth 191:803 (1998).

    Article  CAS  Google Scholar 

  12. Paton, O., and F.I. Talens-Alesson, Colloidal Flocculation of Micellar Solutions of Anionic Surfactants, J. Surfact. Deterg. 3:399 (1998).

    Article  Google Scholar 

  13. Garrett, P.R. The Mode of Action of Antifoams, in Defoaming, edited by P.R. Garrett, Marcel Dekker, New York, 1993, p. 1.

    Google Scholar 

  14. Rosen, M.S., Surfactants and Interfacial Phenomena, 2nd edn., John Wiley & Sons, New York, 1989, pp. 224, 240.

    Google Scholar 

  15. Hudson, D.M., The Use of Contact Angle Analysis to Determine Surface Cleanliness, Met. Finish. 10:26 (1997).

    Article  Google Scholar 

  16. Kwok, D.Y., T. Gietzelt, K. Grundke, H.J. Jacobasch, and A.W. Neumann, Contact Angle Measurements and Contact Angle Interpretation: I. Contact Angle Measurements by Axisymmetric Drop Shape Analysis and a Goniometer Sessile Drop Technique, Langmuir 13:2880 (1997).

    Article  CAS  Google Scholar 

  17. Miwa, M., A. Nakajima, A. Fujishima, K. Hashimota, and T. Watanabe, Effect of Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces, Langumuir 16: 5754 (2000).

    Article  CAS  Google Scholar 

  18. Subrahmanyam, T.V., C.A. prestidge, and J. Ralston, Contact Angle and Surface Analysis Studies of Sphalerite Particles, Miner. Eng. 9:727 (1996).

    Article  CAS  Google Scholar 

  19. Gyorvary, E., J. Peltonen, M. Linden, and J.B. Rosenholm, Reorganization of Metal Stearate LB Films Studied by AFM and Contact Angle Measurements, Thin Solid Films 284:368 (1996).

    Article  Google Scholar 

  20. Adamson, A.W., Physical Chemistry of Surfaces, 5th edn. John Wiley & Sons, New York, 1990, p. 379.

    Google Scholar 

  21. Serre, C., P. Wynblatt, and D. Chatain, Study of a Wetting-Related Adsorption Transition in the GA-Pb System: I. Surface Energy Measurements of Ga-rich Liquid, Surf. Sci. 415:336 (1998).

    Article  CAS  Google Scholar 

  22. Dechabumphen, N., N. Luangpirom, C. Saiwan, and J.F. Scamehorn, Contact Angle of Surfactant Solutions on Precipitated Surfactant Surfaces, J. Surfact. Deterg. 4:367 (2001).

    Google Scholar 

  23. ASTM, Annual Book of ASTM Standards, Vol. 15.04, ASTM International, West Conshohocken, PA, 2003, method D1331-89.

    Google Scholar 

  24. Lunkenheimer, K., and K.D. Wantke, Determination of the Surface Tension of Surfactant Solution Applying the Method of Lecomte DuNouy (ring tensiometer), Colloid Polym. Sci. 25:354 (1981).

    Google Scholar 

  25. Mukerjee, P., and K.J. Mysels, Critical Micelle Concentrations of Aqueous Surfactant Systems, Department of Commerce, U.S. Government, Washington DC, 1970.

    Google Scholar 

  26. Vora, S., A. George, H. Desai, and P. Bahadun, Mixed Micelles of Some Anionic-Anionic, Cationic-Cationic, Ionic-Nonionic Surfactants in Aqueous Media, J. Surfact. Deterg. 2:213 (1999).

    CAS  Google Scholar 

  27. Drelich, J., J.D. Miller, A. Kumar, and G.M. Whitesides, Wetting Characteristics of Liquid Drops at Heterogeneous Surfaces, Colloids Surf. A: Physicochem. Eng. Aspets 93:1 (1994).

    Article  CAS  Google Scholar 

  28. Rodriguez, C.H., C. Chintasathien, J.F. Scamehorn, C. Saiwan, and S. Chavadej, Precipitation in Solution Containing Mixtures of Synthetic Anionic Surfactant and Soap. I. Effect of Sodium Octanoate on Hardness Tolerance of Sodium Dodecyl Sulfate, J. Surfact. Deterg. 1:321 (1998).

    Article  CAS  Google Scholar 

  29. Scamehorn, J.F., R.S. Schechter, and W.H. Wade, Adsorption of Surfactants on Mineral Oxide Surface from Aqueous Solutions. I: Isomerically Pure Anionic Surfactants, J. Colloid Interface Sci. 85:463 (1982).

    Article  CAS  Google Scholar 

  30. Dahanayake, M., A.W. Cohen, and M.J. Rosen, Relation of Structure to Properties of Surfactant: 13. Surface and Thermodynamic Properties of Some Oxyethylenated Sulfates and Sulfonates, J. Phys. Chem. 90:2413 (1986).

    Article  CAS  Google Scholar 

  31. Harwell, J.H., and J.F. Scamehorn, Adsorption from Mixed Surfactant Systems, in Mixed Surfactant Systems, edited by K. Ogino and M. Abe, Marcel Dekker, New York, 1993, p. 263.

    Google Scholar 

  32. Rathman, J.F., and J.F. Scamehorn, Counterion Binding on Mixed Micelles, J. Phys. Chem. 88:5807 (1984).

    Article  CAS  Google Scholar 

  33. Hanna, H.S., and P., Somasundaran, Adsorption of Sulfonates on Reservoir Rocks, J. Colloid Interface Sci. 19:221 (1979).

    Google Scholar 

  34. Smith, S.A., B.J. Shiau, J.H. Harwell, J.F. Scamehorn, and D.A. Sabatini, Performance and Chemical Stability of a New Class of Ethoxylate Sulfate Surfactants in a Subsurface Remediation Application, Colloids Surf. 116:225 (1996).

    Article  CAS  Google Scholar 

  35. Zisman, W.A., Contact Angle, Wettability and Adhesion, in Advances in Chemistry Series 43, edited by R.F. Gould, American Chemical Society, Washington DC, 1964, p. 1.

    Google Scholar 

  36. Gau, C.S., and G. Zografi, Relationships Between Adsorption and Wetting of Surfactant Solutions, J. Colloid Interface Sci. 140:1 (1990).

    Article  CAS  Google Scholar 

  37. Pyter, R.A., Zografi, G., and P. Mukerjee, Wetting of Solids by Surface-Active Agents: The Effects of Unequal Adsorption to Vapor-Liquid and Solid-Liquid Interfaces, J. Colloid Interface Sci. 89:144 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Balasuwatthi, P., Dechabumphen, N., Saiwan, C. et al. Contact angle of surfactant solutions on precipitated surfactant surfaces. II. Effects of surfactant structure, presence of a subsaturated surfactant, pH, and counterion/surfactant ratio. J Surfact Deterg 7, 31–40 (2004). https://doi.org/10.1007/s11743-004-0285-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-004-0285-y

Key Words

Navigation