Skip to main content
Log in

Comparison of two methods to estimate the standard free energy of adsorption

  • Published:
Journal of Surfactants and Detergents

Abstract

To determine the increment of the standard free energy per methylene group ΔG 0 CH 2 for ionic and nonionic surfactants, two calculation methods are proposed. One procedure is based on the adsorption energy parameter of the respective adsorption isotherm, and the second on the critical micelle concentration. Experimental surface tension isotherms for two homologous series, a nonionic (CnBHB) and an ionic (CnTAB) surfactant, are used to demonstrate how the methods work. As adsorption isotherms, the Frumkin and the reorientation models provide a rather good description for both surfactants. The free energy increments ΔG 0 obtained from the two methods are the same if the reorientation model is used, but the Frumkin model gives different results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies, J.T., and E.K. Rideal, Interfacial Phenomena, Academic Press, New York, 1963.

    Google Scholar 

  2. Ross, S., and L.D. Morrison, Thermodynamics of Adsorbed Solutes, Colloids Surf. 7:121 (1983).

    Article  CAS  Google Scholar 

  3. Katz, J.L., Free Energy of Adsorption of Nonionic Surfactants at the Saturated Air-Water Interface, J. Colloid Interface Sci. 56:179 (1976).

    Article  CAS  Google Scholar 

  4. Kishimoto, N., and K. Sumida, Effect of Counter-ions on the Thermodynamic Properties of Alkali Dodecyl Sulfates in Monomeric and Micellar Dispersions, Chem. Pharm. Bull. 24:1226 (1976).

    CAS  Google Scholar 

  5. Rosen, M.J., Surfactants and Interfacial Phenomena, John Wiley & Sons, New York, 1978.

    Google Scholar 

  6. Lange, H., Sutrface Films, in Nonionic Surfactants, edited by M. Schick, Marcel Dekker, New York, 1967, p. 443.

    Google Scholar 

  7. Rosen, M.J., Comparative Effects of Chemical Structure and Environment on the Adsorption of Surfactants at the L/A Interface and on Micellization, in Solution Chemistry of Surfactants, edited by K.L. Mittal, Plenum, New York, 1979, Vol. 1, p. 45.

    Google Scholar 

  8. Rosen, M.J., A.W. Cohen, M. Dahanayake, and X.-Y. Hua, Relationship of Structure to Properties in Surfactants. 10. Surface and Thermodynamic Properties of 2-Dodecyloxypoly-(ethenoxyethanol)s, C12H25(OC2H4)x OH, in Aqueous Solution, J. Phys. Chem. 85:541 (1982).

    Article  Google Scholar 

  9. Fainerman, V.B., and R. Miller, Thermodynamics of Adsorption of Surfactants at the Solution-Fluid Interface, in Surfactants—Chemistry, Interfacial Properties and Application, edited by V.B. Fainerman, D. Möbius, and R. Miller, Elsevier, Amsterdam, 2001, Studies in Interface Science, Vol. 13, p. 99.

    Google Scholar 

  10. Abramzon, A.A., Prediction of Surface Tension and Adsorption Isotherms for Surfactants in Liquid-Gas and Liquid-Liquid Systems, Russian J. Appl. Chem. 69:1159 (1996).

    Google Scholar 

  11. Haque, M.E., A.R. Das, and S.P. Moulik, Behaviours of Sodium Deoxycholate (NaDC) and Polyoxyethylene tert-Octylphenyl Ether (Triton X-100) at the Air/Water Interface and in the Bulk, J. Phys. Chem. 99:14032 (1995).

    Article  CAS  Google Scholar 

  12. Fainerman, V.B., Kinetics of Adsorption of Ionic Surfactants at the Solution-Air Interface and the Nature of the Adsorption Barrier, Colloids Surf. 57:249 (1991).

    Article  CAS  Google Scholar 

  13. Markina, Z.N., N.M. Zadymova, and O.P. Bovkun, Surface Activity of Diphilic Substances at Different Liquid Interfaces, Colloids Surf. 22:9 (1987).

    Article  CAS  Google Scholar 

  14. Aratono, M., S. Uryu, Y. Hayami, K. Motomura, and R. Matuura, Phase Transitions in the Adsorbed Films at Water/Air Interface, J. Colloid Interface Sci. 98:33 (1984).

    CAS  Google Scholar 

  15. Lucassen-Reynders, E.H., Adsorption at Fluid Interfaces, in Anionic Surfactants: Physical Chemistry of Surfactant Action, Marcel Dekker, New York, 1981, Surfactant Science Series, Vol. 11, p. 1.

    Google Scholar 

  16. Fainerman, V.B., E.H. Lucassen-Reynders, and R. Miller, Adsorption of Surfactants and Proteins at Liquid/Fluid Interfaces, Colloids Surf. A 143:141 (1998).

    Article  CAS  Google Scholar 

  17. Fainerman, V.B., and R. Miller, Surface Tension Isotherms for Surfactant Adsorption Layers Including Surface Aggregation, Langmuir 12:6011 (1996).

    Article  CAS  Google Scholar 

  18. Fainerman, V.B., R. Miller, and E.V. Aksenenko, Adsorption Behavior of Oxyethylated Alcohols at the Solution/Air Interface, Langmuir 16:4196 (2000).

    Article  CAS  Google Scholar 

  19. Fainerman, V.B., and E.H. Lucassen-Reynders, Adsorption of Single and Mixed Ionic Surfactants at Fluid Interfaces, Adv. Colloid Interface Sci. 96:295 (2002).

    Article  CAS  Google Scholar 

  20. Rusanov, A.I., Micellization in Surfactant Solutions, Chem. Rev., 27:1 (1997).

    Google Scholar 

  21. Rusanov, A.I., and V.B. Fainerman, Surface Tension of the Surfactant Solution and the Characteristics of Micelles, Dokl. Akad. Nauk SSSR 308:651 (1989).

    CAS  Google Scholar 

  22. Wüstneck, R., J. Kriwanek, M. Herbst, G. Wasow, and K. Haage, The Adsorption Behaviour of Long-Chain N-Alkylbetaines and Their Hydrobromides, Colloids Surf. 66:1 (1992).

    Article  Google Scholar 

  23. Wüstneck, R., R. Miller, J. Kriwanek, and H.-R. Holzbauer, Quantification of Synergistic Interaction Between Different Surfactants Using a Generalized Frumkin-Damaskin Adsorption Isotherm, Langmuir 10:3738 (1994).

    Article  Google Scholar 

  24. Fainerman, V.B., R. Miller, and R. Wüstneck, Adsorption Isotherm and Surface Tension Equation for a Surfactant with Changing Partial Molar Area, 2. Non-ideal Surface Layer, J. Phys. Chem. 101:6479 (1997).

    CAS  Google Scholar 

  25. Bergeron, V., Disjoining Pressures and Film Stability of Alkyltrimethylammonium Bromide Foam Films, Langmuir 13:3474 (1997).

    Article  CAS  Google Scholar 

  26. Asnacios, A., D. Langevin, and J.-F. Argillier, Complexation of Cationic Surfactant and Anionic Polymer at the Air-Water Interface, Macromolecules 29:7412 (1996).

    Article  CAS  Google Scholar 

  27. Lu, J.R., R.K. Thomas, R. Aveyard, B.P. Binks, P. Cooper, P.D.I. Fletcher, A. Sokolowski, and J. Penfold, Structure and Composition of Dodecane Layers Spread on Aqueous Solutions of Tetradecyltrimethylammonium Bromide: Neutron Reflection and Surface Tension Measurements, J. Phys. Chem. 96:10971 (1992).

    Article  CAS  Google Scholar 

  28. Shchukin, E.D., Z.N. Markina, and N.M. Zadymova, The Study of the State of Adsorption Layers of Long-Chain One-One Valent Electrolytes at Liquid Interface, Progr. Colloid Polymer. Sci. 68:90 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Miller.

About this article

Cite this article

Miller, R., Fainerman, V.B. & Möhwald, H. Comparison of two methods to estimate the standard free energy of adsorption. J Surfact Deterg 5, 281–286 (2002). https://doi.org/10.1007/s11743-002-0228-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-002-0228-7

Key Words

Navigation