Skip to main content
Log in

Alkali metal atom adsorption on-top of the F 0s defective center of MgO(001) surface

  • Materials Science and Chemical Engineering
  • Published:
Journal of Shanghai University (English Edition)

Abstract

A plane wave density functional theory method was used to investigate the adsorption properties of isolated alkali metal atoms, including Li, Na, K, Rb and Cs on-top of the F 0s defective center of MgO(001) surface. Among all the alkali metals, the lithium atom binds most strongly with the highest adsorption energy of 0.67 eV and the shortest distance of about 0.257 nm between metal and the surface, the binding energy for the sodium atom comes second, and just half of this value for the other alkali metal atoms. The relatively strong interaction of Li with the F 0s center can be explained by a more covalent bonding involved, evidenced by results of both the projected density of states and the projected charge density. The bonding mechanism is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finazzi E, Valentin C, Pacchioni G, Chiesa M, Giamello E, Gao H, Lian J, Risse T, Freund H J. Properties of alkali metal atoms deposited on a MgO surface: A systematic experimental and theoretical study [J]. Chemistry-A European Journal, 2008, 14(4): 4404–4414.

    Article  Google Scholar 

  2. Karolewski M A, Cavell R G. Coadsorption of cesium and water on MgO(100) [J]. Surface Science, 1992, 271(1/2): 128–138.

    Article  Google Scholar 

  3. Huang H H, Jiang X, Zou Z, Chin W S, Xu G Q, Dai W L, Fan K N, Deng J F. Potassium adsorption and reaction with water on MgO(100) [J]. Surface Science, 1998, 412–413(3): 555–561.

    Article  Google Scholar 

  4. Yan Y Y, Chisholm M F, Pennycook S J, Pantelides S T. Structures of pure and Ca-segregated MgO (001) surfaces [J]. Surface Science, 1999, 442(2): 251–255.

    Article  Google Scholar 

  5. Silvia B, Cristiana D V, Gianfranco P. Alkali metal doping of MgO: Mechanisms of formation of paramagnetic surface centers [J]. Journal of Physical Chemistry B, 2003, 107(33): 8498–8506.

    Article  Google Scholar 

  6. Lian J C, Finazzi E, Valentin C, Risse T, Gao H J, Pacchioni G, Freund H J. Li atoms deposited on single crystalline MgO(001) surface. A combined experimental and theoretical study [J]. Chemical Physics Letters, 2008, 450(4/6): 308–311.

    Article  Google Scholar 

  7. Martinez U, Giordano L, Pacchioni G. Tuning the work function of ultrathin oxide films on metals by adsorption of alkali atoms [J]. Journal of Chemical Physics, 2008, 128(16), DOI:10.1063/1.2905218.

  8. Snyder J A, Jaffe J E, Gutowski M, Lin Z, Hess A C. LDA and GGA calculations of alkali metal adsorption at the (001) surface of MgO [J]. The Journal of Chemical Physics, 2000, 112(6): 3014–3022.

    Article  Google Scholar 

  9. Zobel N, Behrendt F. Activation energy for hydrogen abstraction from methane over Li-doped MgO: A density functional theory study [J]. Journal of Chemical Physics, 2006, 125(7), DOI:10.1063/1.2227387.

  10. Kim Y D, Stultz J, Wei T, Goodman D W. Interaction of Ag with MgO(100) [J]. Journal of Physical Chemistry B, 2002, 106(27): 6827–6830.

    Article  Google Scholar 

  11. Fernandez S, Markovits A, Fuster F, Christian M. First row transition metal atom adsorption on defect-free MgO(100) surface [J]. Journal of Physical Chemistry C, 2007, 111(18): 6781–6788.

    Article  Google Scholar 

  12. Fernandez S, Markovits A, Minot C. First row transition metal atom adsorption on-top of F 0s defects of a MgO(100) surface [J]. Journal of Physical Chemistry C, 2008, 112(42): 16491–16496.

    Article  Google Scholar 

  13. Halim W S A, Shalabi A S, Soliman K A. Transition metal atoms on oxide supports density functional calculations [J]. International Journal of Quantum Chemistry, 2009, 109(5): 1094–1102.

    Article  Google Scholar 

  14. Neyman K M, Inntam C, Matveev A V, Vladimir A, Nasluzov, N R. Single d-metal atoms on Fs and F +s defects of MgO(001): A theoretical study across the periodic table [J]. Journal of the American Chemical Society, 2005, 127(33): 11652–11660.

    Article  Google Scholar 

  15. Park J, Park I, Yu B D. Adsorption of transition metal atoms on defective MgO(001) surfaces: Atomic and electronic structures [J]. Journal of the Korean Physical Society, 2009, 54(1): 109–114.

    Article  Google Scholar 

  16. Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B, 1992, 45(23): 13244–13249.

    Article  Google Scholar 

  17. Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a planewave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186.

    Article  Google Scholar 

  18. Finocchi F. Interaction of a water molecule with the oxygen vacancy on the MgO(100) surface [J]. Physical Review B, 2001, 64(12), DOI:10.1103/PhysRevB.64.125426.

  19. Xu R, Gong W M, Zhang X, Wang L J, Hong F. DFT study of alkali metal atom adsorption on defect-free MgO(001) surface [J]. Chinese Journal of Chemical Physics, 2010, 23(5): 538–542.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run Xu  (徐 闰).

Additional information

Project supported by the National Natural Science Foundation of China (Grant No.60877017), and the Innovation Program of Shanghai Municipal Education Commission (Grant No.08YZ04)

About this article

Cite this article

Zhang, X., Xu, R., Wang, Lj. et al. Alkali metal atom adsorption on-top of the F 0s defective center of MgO(001) surface. J. Shanghai Univ.(Engl. Ed.) 15, 223–228 (2011). https://doi.org/10.1007/s11741-011-0725-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11741-011-0725-3

Keywords

Navigation