Skip to main content
Log in

Asymptotical stability analysis of linear fractional differential systems

  • Applied Mathematics and Mechanics
  • Published:
Journal of Shanghai University (English Edition)

Abstract

It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary layer effects in ducts, electromagnetic waves, quantitative finance, quantum evolution of complex systems, and fractional kinetics. In this paper, the asymptotical stability of higher-dimensional linear fractional differential systems with the Riemann-Liouville fractional order and Caputo fractional order were studied. The asymptotical stability theorems were also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations [M]. New York: John Wiley & Sons Inc, 1993.

    Google Scholar 

  2. Abel N H. Solution de quelques problèmes à l’aide d’intégrales définies [J]. Oeuvres Complètes, Gròndahl, Christiania, Norway, 1881, 1: 16–18.

    Google Scholar 

  3. Skaar S B, Michel A N, Miller R K. Stability of viscoelastic control systems [J]. IEEE Trans Automat Contr, 1988, 33(4): 348–357.

    Article  MATH  MathSciNet  Google Scholar 

  4. Ichise M, Nagayanagi Y, Kojima T. An analog simulation of noninteger order transfer functions for analysis of electrode processes [J]. J Electroanal Chem, 1971, 33(2): 253–265.

    CAS  Google Scholar 

  5. Sun H H, Abdelwahab A A, Onaral B. Linear approximation of transfer function with a pole of fractional power [J]. IEEE Trans Automat Contr, 1984, 29(5): 441–444.

    Article  MATH  Google Scholar 

  6. Sugimoto N. Burgers equation with a fractional derivative: hereditary effects on nonlinear acoustic waves [J]. J Fluid Mech, 1991, 225(4): 631–653.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Heaviside O. Electromagnetic theory [M]. New York: Chelsea, 1971.

    Google Scholar 

  8. Laskin N. Fractional market dynamics [J]. Phys A, 2000, 287(3): 482–492.

    Article  MathSciNet  Google Scholar 

  9. Kusnezov D, Bulgac A, Dang G D. Quantum Lévy processes and fractional kinetics [J]. Phys Rev Lett, 1999, 82(6): 1136–1139.

    Article  ADS  CAS  Google Scholar 

  10. Li C P, Peng G J. Chaos in Chen’s system with a fractional order [J]. Chaos Solitons & Fractals, 2004, 22(2): 443–450.

    Article  MATH  MathSciNet  Google Scholar 

  11. Montseny G. Diffusive representation of pseudo-differential time-operators [J]. ESAIM: Proceedings Fractional Differential Systems: Models, Methods and Applications, 1998, 5: 159–175.

    MATH  MathSciNet  Google Scholar 

  12. Li Gen-guo, Zhu Zheng-you, Cheng Chang-jun. Dynamical stability of viscoelastic column with fractional derivative constitutive relation [J]. Applied Mathematics and Mechanics, 2001, 22(3): 294–303 (In Chinese).

    Article  MATH  Google Scholar 

  13. Samko S, Kilbas A, Marichev O. Fractional integrals and derivatives and some of their applications [M]. Minsk: Science and Technica, 1987.

    Google Scholar 

  14. Podlubny I. Fractional differential equations [M]. San Diego: Academic Press, 1999.

    Google Scholar 

  15. Kilbas A, Srivastava M, Trujillo J. Theory and applications of fractional differential equations [M]. North-Holland: Elsevier Press, 2006.

    Google Scholar 

  16. Ahmed E E, el-Sayed A M A, el-Saka H A A. Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J]. J Math Anal Appl, 2007, 325(1): 542–553.

    Article  MATH  MathSciNet  Google Scholar 

  17. Daftardar-Gejji V, Jafari H. Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives [J]. J Math Anal Appl, 2007, 328(2): 1026–1033.

    Article  MATH  MathSciNet  Google Scholar 

  18. Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentation [J]. Frac Cal Appl Anal, 2002, 5(4): 367–386.

    MATH  MathSciNet  Google Scholar 

  19. Heymans N, Podlubny I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives [J]. Rheologica Acta, 2006, 45(5): 765–772.

    Article  CAS  Google Scholar 

  20. Li C P, Deng W H. Remarks on fractional derivatives [J]. Appl Math Comput, 2007, 187(2): 777–784.

    Article  MATH  MathSciNet  Google Scholar 

  21. Luchko Y, Gorenflo R. An operational method for solving fractional differential equations with the Caputo derivatives [J]. Acta Math Vietnam, 1999, 24(2): 207–233.

    MATH  MathSciNet  Google Scholar 

  22. Matignon D. Stability results for fractional differential equations with applications to control processing [C]// Computational Engineering in Systems and Application Multiconference, IMACS, IEEE-SMC, Lille, France. 1996, 2: 963–968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-pin Li  (李常品).

About this article

Cite this article

Li, Cp., Zhao, Zg. Asymptotical stability analysis of linear fractional differential systems. J. Shanghai Univ.(Engl. Ed.) 13, 197–206 (2009). https://doi.org/10.1007/s11741-009-0302-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11741-009-0302-1

Keywords

Navigation