Skip to main content
Log in

Nonlinear property of the visco-elastic-plastic material in the impact problem

  • Published:
Journal of Shanghai University (English Edition)

Abstract

In this paper a numerical investigation on the non-Newtonian flow problem is conducted, in order to shed further light on the mathematical and virtual test methods in the auto-crash safety analysis. The accurate mathematical prediction would supply ultimate research tool for the passive safety analysis in such a scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hou L. Failure modes analysis in the crash barrier [C]// Proc 5th Euro LS-DYNA User’s Conference, the ICC Birminghang, 5B-02, 2005.

  2. Hou L, Harwood R. Nonlinear properties in the Newtonian and non-newtonian equations [J]. Nonlinear Analysis, 1997, 30(4): 2497–2505.

    Article  MATH  Google Scholar 

  3. Hou L, Nassehi V. Evaluation of stress effective flow in rubber mixing [J]. Nonlinear Analysis, 2001, 47(3):1809–1820.

    Article  MATH  MathSciNet  Google Scholar 

  4. Crochet M J. Numerical simulation of viscoelastic flow [M]// Non-Newtonian Fluid Mechanics. Brussels: Von Karman Institute for Fluid Dynamics Lecture Series, 1994, 03: 1–68.

    Google Scholar 

  5. Giesekus H. A unified approach to a variety of constitutive models for polymer fluids based on the concept of configuration-dependent modecular mobility [J]. Rheol Acta, 1982, 21: 366–375.

    Article  MATH  CAS  Google Scholar 

  6. Giesekus H. Disperse systems: depence of rheological properties on the type of flow with implications for food rheology [M]// Jowitt R, Escher F, Hallstrom B, et al. Physical properties of foods. London: Applied Science, 1983: 205–220.

    Google Scholar 

  7. Petera J. A new finite element scheme using the Lagrangian framework for simulation of visco-elastic fluid flows [J]. J Non-Newt Fluid Mech, 2002, 103: 1–43.

    Article  MATH  ADS  CAS  Google Scholar 

  8. Walters K. Rheometry [M]. London: Chapman & Hall, 1975.

    Google Scholar 

  9. Weaire D, Hou L. A note on statistics of the mature 2-D soap froth [J]. Phil Mag Letters, 1990, 62(6): 427–430.

    Article  ADS  Google Scholar 

  10. Hou L, Qiu L. Computation and asymptotic analysis in the impact problem [J]. Acta Math Appl Sin, 2009, 25(1): 117–127.

    Article  MathSciNet  Google Scholar 

  11. Huang Y, Xu J. A conforming finite element method for overlapping and nonmatching grids [J]. Mathematics of Computation, 2003, 72: 1057–1066.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Lin Qun, Yan Ning-ning. Global superconvergence of mixed finite element methods for Maxwell’s equations [J]. Journal of Engineering Mathematics, 1996, 13: 1–10 (in Chinese).

    MATH  MathSciNet  Google Scholar 

  13. Marchal J M, Crochet M J. A new mixed finite element for calculating viscoelastic flow [J]. J Non-Newt Fluid Mech, 1987, 26: 77–114.

    Article  MATH  CAS  Google Scholar 

  14. Cao L Q, Cui J Z, Zhu D C. Multiscale asymptotic analysis and numerical simulation for the second order Helmholtz equations with rapidly oscillating coefficients over general domains [J]. SIAM J Numerical Analysis, 2002, 40(2): 543–577.

    Article  MATH  MathSciNet  Google Scholar 

  15. Lee Y J, Xu J. New formulations, positivity preserving discretizations and stability analysis for non-Newtonian flow models [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(9–12): 1180–1206.

    Article  MATH  MathSciNet  Google Scholar 

  16. Li Kai-tai, Huang Ai-xiang, Huang Qping-hui. Finite element analysis and its application [M]. Beijing: Science Press, 2006 (in Chinese).

    Google Scholar 

  17. Petrie C J. Elongational flows [M]. London: Pitman, 1979.

    Google Scholar 

  18. Thien N P, Tanner R I. A new constitutive equation derived from network theory [J]. J Non-Newt Fluid Mech, 1977, 2: 353–365.

    Article  MATH  Google Scholar 

  19. Hou L, Paris R B, Wood A D. Resistive interchange mode in the presence of equilibrium flow [J]. Physics of Plasmas, American Institute of Physics, 1996, 3(2): 473–481.

    Article  ADS  CAS  Google Scholar 

  20. Johnson M W Jr, Segalman D. A model for viscoelastic fluid behavior which allows non-affine deformation [J]. J Non-Newt Fluid Mech, 1977, 2: 225–270.

    Article  Google Scholar 

  21. Zhang H, Zhang P W. Local existence for the FENE-dumbbell model of polymeric fluids [J]. Archive for Rational Mechanics and Analysis, 2006, 181(2): 3–400.

    Article  Google Scholar 

  22. Adams D A. Sobolev spaces [M]. New York: Academic Press, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hou  (侯 磊).

Additional information

(Communicated by NI Ming-kang)

Project supported by the National Natural Science Foundation of China (Grant No.10871225), the Pujing Talents’ Project of Shanghai (Grant No.PJ[2006]118), and the E-Institutes of Shanghai Municipal Education Commission (Grant No.E03004)

About this article

Cite this article

Hou, L., Cai, L. Nonlinear property of the visco-elastic-plastic material in the impact problem. J. Shanghai Univ.(Engl. Ed.) 13, 23–28 (2009). https://doi.org/10.1007/s11741-009-0106-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11741-009-0106-3

Keywords

2000 Mathematics Subject Classification

Navigation