Skip to main content
Log in

Manufacturing of polygon fiber reinforced plastic profiles by rotational molding and intrinsic hybridization

  • Prouction Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The manufacturing of lightweight shafts, pipes and profiles often uses hollow structures made from fiber reinforced plastics (FRP) due to their better density related properties. For applications with locally high tribological stresses, the use of FRP is not yielding proper results. In terms of lightweight construction, a hybrid design with a hollow FRP basic structure and local metallic elements in areas of high tribological stress is ideal for these applications. A promising approach for the production of these parts is rotational molding. Rotational molding for FRP–metal profiles is understood as a manufacturing process where machined, metallic elements and dry continuous fiber structures will be assembled and laid in a closed mold. Afterwards, the liquid matrix will be casted and the mold is then rotated at high speed until the fiber structure is fully impregnated and the matrix is cured. As there are short flow paths, this process is offering the potential to realize short cycle times of only a few minutes. Within this paper, the manufacturing of polygon profiles via rotational molding is described. These profiles can be produced by using centrifugal cores which were developed at the wbk Institute of Production Science. These cores are made of an elastomer composite material and they expand during the rotational molding process. The modeling of these cores and their impact on the impregnation pressure is shown here as well as their contribution in achieving higher fiber volume fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Henning F, Moeller E (eds) (2011) Handbuch Leichtbau – Methoden, Werkstoffe, Fertigung, 1st edn. Carl Hanser Verlag, München

    Google Scholar 

  2. Collins JA, Busby H, Staab G (2009) Mechanical design of machine elements and machines, 2nd edn. Wiley, New York

    Google Scholar 

  3. Esmaeel RA, Taheri F (2011) Influence of adherend’s delamination on the response of single lap and socket tubular adhesively bonded joints subjected to torsion. Compos Struct 93:1765–1774

    Article  Google Scholar 

  4. Lee SW, Lee DG (2007) Torque transmission capability of composite–metal interference fit joints. Compos Struct 78:584–595

    Article  Google Scholar 

  5. Croccolo D, De Agostinis M, Vincenzi N (2012) Design of hybrid steel-composite interference fitted and adhesively bonded connections. Int J Adhes Adhes 37:19–25

    Article  Google Scholar 

  6. Khalid YA et al (2007) Bending fatigue behavior of hybrid aluminum/composite drive shafts. Mater Des 28:329–334

    Article  Google Scholar 

  7. Mutasher SA, Sahari BB, Hamouda AMS, Sapuan SM (2007) Static and dynamic characteristics of a hybrid aluminium/composite drive shaft. J Mater Des Appl 221:63–75

    Google Scholar 

  8. Fleischer J, Koch S, Gebhardt J, Schwennen J, Wagner H (2014) Intrinsische Hybridverbunde für Leichtbautragstrukturen, Fachtagung Thermoplastische Faserverbundkunststoffe, 5–6 Nov 2014, Erlangen, Deutschland, Thermoplastische Faserverbundkunststoffe, pp 199–207

  9. Neitzel M, Mitschang P (2004) Handbuch Verbundwerkstoffe - Werkstoffe, Verarbeitung, Anwendung. Carl Hanser Verlag, Kaiserslautern, pp 329–333

  10. Hufenbach WA, Helms O, Werner J (2007) Shaft to collar connections for high loaded composite lightweight gear components. Welle-Nabe-Verbindungen: Berechnung, Gestaltung, Anwendung, VDI-Berichte Nr. 2004

  11. Hufenbach W et al (2005) Integrated pipe thread for the introduction of high loads into filament wound lightweight structures. In: VDI-Berichte (1903): Berechnung, Gestaltung, Anwendung, Schraubenverbindungen, pp 301–316

  12. Darcy H (1856) Les fontaines publiques de la ville de Dijon. Dijon, Paris

    Google Scholar 

  13. Ehleben M, Schürmann H (2006) Manufacturing of centrifuged continuous fibre-reinforced precision pipes with thermoplastic matrix. Compos Sci Technol 66:2601–2609

    Article  Google Scholar 

  14. Momentive Specialty Chemicals Inc. (2006) Technical Data Sheet—EPIKOTE™ Resin MGS® RIMR 135 and EPIKURE™ Curing Agent MGS® RIMH 134–RIMH 137. Issued: August 2006, Rev. 7/9/2014

  15. Askeland DR, Fulay PP, Wright WJ (2011) The science and engineering of materials, 6th edn. Cengage Learning, Boston, pp 652–662

    Google Scholar 

  16. Wacker Chemie AG (2014) Technical data sheet for ELASTOSIL® M 4511—version 1.6

  17. Lide DR (1999) CRC handbook of chemistry and physics, 80th edn. CRC Press, Boca Raton

    Google Scholar 

  18. ISO 37:2011 (2011) Rubber, vulcanized or thermoplastic—determination of tensile stress–strain properties

  19. Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42(1):339–362

    Article  Google Scholar 

  20. Voigt W (1889) Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann Phys 274(12):573–587. doi:10.1002/andp.18892741206

    Article  Google Scholar 

  21. Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM Z Angew Math Mech 9(1):49–58. doi:10.1002/zamm.19290090104

    Article  Google Scholar 

  22. Halpin JC, Kardos JL (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16(5):344–352

    Article  Google Scholar 

  23. Gutowski TG (1985) A resin flow/fiber deformation model for composites. SAMPE Q 16(4):58–64

    MathSciNet  Google Scholar 

  24. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cyber 9(1):62–66. doi:10.1109/TSMC.1979.4310076

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper is based on investigations of the collaborative research program “Schwerpunktprogramm 1712” which is kindly supported by the German Research Foundation (DFG—Deutsche Forschungsgemeinschaft).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon-Frederik Koch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleischer, J., Koch, SF. & Coutandin, S. Manufacturing of polygon fiber reinforced plastic profiles by rotational molding and intrinsic hybridization. Prod. Eng. Res. Devel. 9, 317–328 (2015). https://doi.org/10.1007/s11740-015-0620-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-015-0620-0

Keywords

Navigation