Skip to main content
Log in

Planning of synchronized assembly lines taking into consideration human performance fluctuations

  • Assembly
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Increasing demands on the flexibility of assembly workers has led to numerous times of high exposure rates within one workday. Inflexible processing times in synchronized assembly lines mismatch the individual, circadian variable work capacities of operators. As a result, frequent performance peaks due to limited possibilities for individualization elevate physiological and psychological workloads. This paper’s main objective is an individualization of assembly system performance requirements aimed at providing the opportunity to adapt current processing times to individual work capacities for reactively levelling the operators’ workload. On the one hand, the authors focus on defining requirements to enable a company to record valid current processing times within a synchronized assembly line. The authors provide a checklist aimed at generating sets of raw data specifying the necessary requirements. This checklist can be applied by the user of the approach. The authors provide an approach of statistical data processing to eliminate non-valid data-sets which do not allow inference on human performance fluctuations. On the other hand, the paper provides an approach for planning synchronized assembly lines taking into consideration human performance fluctuations. Based on defining performance and time characteristics, the authors methodically deduce one exemplary recommendation for the examined synchronized assembly lines quantifying the expected value for production periods. As a result, this combination leads to the possibility of methodically adapting systems’ performance requirements to fluctuating operators’ work capacity. Moreover, application of the presented approaches within a field study leads to an analysis and evaluation of significant production periods in a German car manufacturer’s engine assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. A SAL is a flow-oriented production system where the productive units performing the operations are aligned in a serially [2].

  2. Production flexibility can be described with provided, problem-specific solutions without the need to change initially planned system elements [6, 7].

Abbreviations

SAL:

Synchronized assembly line

PPC:

Production planning and control

WS:

Work station

PPT:

Planned processing times

CPT:

Current processing times

CPL:

Current performance level

Var:

Variant/model-type

EV:

Expected value

References

  1. Westkämper E, Bullinger HJ, Horváth P, Zahn E (eds) (2001) Montageplanung–effizient und marktgerecht. Springer, Heidelberg

    Google Scholar 

  2. Boysen N, Fliedner M, Scholl A (2007) A classification of assembly line balancing problems. Eur J Op Res 183(2007):674–693

    Article  MATH  Google Scholar 

  3. Mazzola E, Perrone G, La Diega SN (2008) Shaping inter-firm collaboration in new product development in the automobile industry: a trade-off between a transaction and relational-based approach. Ann CIRP 57(2008):485–488

    Article  Google Scholar 

  4. Hu SJ, Zhu X, Wang H, Koren Y (2008) Product variety and manufacturing complexity in assembly systems and supply chains. Ann CIRP 57(2008):45–48

    Article  Google Scholar 

  5. ElMaraghy WH, Urbanic RJ (2003) Modelling of manufacturing systems complexity. Ann CIRP 52(1):363–366

    Article  Google Scholar 

  6. Zaeh MF, Moeller N, Sudhoff W (2005) A framework for the valuation of changeable manufacturing systems. 3rd International conference on reconfigurable manufacturing

  7. Reinhart G, Schellmann H (2012) A method to determine customer-specific volume flexibility in a supply network. Prod Eng Res Dev 6:69–78

    Article  Google Scholar 

  8. Beach R, Muhlemann AP, Price DHR, Paterson A, Sharp JA (2000) A review of manufacturing flexibility. Eur J Oper Res 122:41–57

    Article  MATH  Google Scholar 

  9. Baines TS, Kay JM (2002) Human performance modelling as an aid in the process of manufacturing system design: a pilot study. Int J Prod Res 40(10):2321–2334

    Article  MATH  Google Scholar 

  10. Denkena B, Lorenzen LE, Schmidt J (2012) Adaptive process planning. Prod Eng Res Dev 6:55–67

    Article  Google Scholar 

  11. Becker C, Scholl A (2006) A survey on problems and methods in generalized assembly line balancing. Eur J Oper Res 168:694–715

    Article  MATH  MathSciNet  Google Scholar 

  12. Feldmann K, Müller B, Haselmann T (1999) Automated assembly of lightweight automotive components. Ann CIRP 48(1):9–12

    Article  Google Scholar 

  13. Din ENISO (2004) 6385 Grundsätze der Ergonomie für die Gestaltung von Arbeits-systemen. Beuth, Berlin

    Google Scholar 

  14. Lotter B, Schilling W (1994) Manuelle Montage: Planung–Rationalisierung–Wirtschaftlichkeit. VDI, Düsseldorf

    Google Scholar 

  15. Bullinger HJ, Spath D, Warnecke HJ, Westkämper E (2009) Handbuch Unternehmensorganisation. Strategien, Planung, 3. Auflage. Umsetzung. Springer, Heidelberg

    Book  Google Scholar 

  16. Colledani M, Matta A, Tolio T (2010) Analysis of the production variability in multi-stage manufacturing systems. Ann CIRP 59:449–452

    Article  Google Scholar 

  17. Reinhart G, Glonegger M, Festner M, Egbers J, Schilp J (2012) Adaption of processing times to individual work capacities in synchronized assembly lines. In: Hu SJ (ed) Technologies and systems for assembly quality, productivity and customization. Proceedings of the 4th CIRP conference on assembly technologies and systems, pp 161–164

  18. Kallio K, Johnsson M, Nevalainien OS (2012) Estimating the operation time of flexible surface mount placement machines. Prod Eng Res Dev 6:319–328

    Article  Google Scholar 

  19. Scholz-Reiter B, Freitag M (2007) Autonomous processes in assembly systems. Ann CIRP 56(2):712–729

    Article  Google Scholar 

  20. Carnahan BJ, Norman BA, Redfern MS (2001) Incorporation physical demand criteria into assembly line balancing. IEE Trans 33(2001):875–887

    Google Scholar 

  21. Boysen N (2005) Variantenfließfertigung. Dissertation, Universität Hamburg

  22. Schlick C, Luczak H, Bruder R (2009) Arbeitswissenschaft, 3, vollständig über-arbeitete und erweiterte Auflage. Springer, Heidelberg

    Google Scholar 

  23. Bjerner B, Holm A, Swennson A (1955) Diurnal variation in mental performance—a study of three-shift workers. Br J Ind Med 12(103):103–110

    Google Scholar 

  24. Graf O (1960) Arbeitsphysiologie. In: Gutenberg E (ed) Die Wirtschaftswis-senschaften. Gabler, Wiesbaden

    Google Scholar 

  25. Kratzsch S (2000) Prozess- und Arbeitsorganisation in Fließmontagesystemen. Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig

  26. Fletcher SR, Baines TS, Harrison DK (2008) An investigation of production workers’ performance variations and the potential impact of attitudes. Int J Adv Manuf Technol 35:1113–1123

    Article  Google Scholar 

  27. Dennis P (2007) Lean production simplified: a plain-language guide to the world’s most powerful production system, 2nd edn. Productivity Press, New York

    Google Scholar 

  28. Heymann HH, Seiwert LJ (1982) Job Sharing–Flexible Arbeitszeit durch Arbeitsplatzeinteilung. Expert, Grafenau

    Google Scholar 

  29. REFA Verband für Arbeitsstudien e. V. (ed) (1984) Methodenlehre des Arbeitsstudiums–Teil 1: Grundlagen, 7. Auflage. Hanser, München

  30. Blohm H, Beer T, Seidenberg U, Silber H (1997) Produktionswirtschaft, 3, völlig, neubearbeitete edn. Herne, Berlin

    Google Scholar 

  31. Drumm HJ (2008) Personalwirtschaft, 6th edn. Springer, Heidelberg

    Google Scholar 

  32. Zaeh MF, Prasch M (2007) Systematic workplace and assembly redesign for ageing workforces. Prod Eng Res Dev 1:57–64

    Article  Google Scholar 

  33. Womack JP, Jones DT, Roos D (1990) The machine that changed the world. Based on the Massachusetts Institute of Technology 5-million-dollar 5-year study on the future of the automobile. Rawson Associates, New York

    Google Scholar 

  34. Jungbluth A, Mommsen E (eds) (1968) Angewandte Arbeitswissenschaft: Ein Lehrbuch für Ingenieure. Verlag Mensch und Arbeit, München

    Google Scholar 

  35. Rohmert W, Rutenfranz J (eds) (1983) Praktische Arbeitsphysiologie, 3 neubearbeitete Auflage. Georg Thieme, Stuttgart

    Google Scholar 

  36. Glonegger M, Ottmann W, Schadl M, Distel D (2013) Identification of production rhythms in synchronized assembly lines by recording and evaluating current processing times. Adv Mat Res 769(2013):350–358

    Article  Google Scholar 

  37. Schwab G (1991) Fehlende Werte in der angewandten Statistik. Deutscher Universitäts-Verlag, Wiesbaden

    Google Scholar 

  38. Dickie HF (1951) ABC Inventory Analysis Shoots for Dollars, not Pennies. Fact Manag Maint 109(6):92–94

    Google Scholar 

  39. Eckstein PP (2012) Statistik für Wirtschaftswissenschaftler–Eine realdatenbasierte Einführung mit SPS, 3, überarbeitete und, erweiterte edn. Springer Gabler, Wiesbaden

    Google Scholar 

  40. Colquhoun WP (1971) Biological Rhythms and Human Performance. Academic Press, London

    Google Scholar 

  41. Glonegger M (2014) Berücksichtigung menschlicher Leistungsschwankungen bei der Planung von Variantenfließmontagesystemen. UTZ, München

    Google Scholar 

Download references

Acknowledgments

The project “BioTakt–Adaption of Production Planning and Control to Human Circadian Rhythms” is funded by the Bavarian research trust. Furthermore, support from our industrial partners serves as the foundation for research activities in this field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Glonegger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glonegger, M., Reinhart, G. Planning of synchronized assembly lines taking into consideration human performance fluctuations. Prod. Eng. Res. Devel. 9, 277–287 (2015). https://doi.org/10.1007/s11740-014-0595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0595-2

Keywords

Navigation