Skip to main content
Log in

Robot-based automation system for the flexible preforming of single-layer cut-outs in composite industry

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Due to the outstanding material properties the use of carbon fiber reinforced plastics in aerospace applications has grown rapidly during the last years. However, the manual process of creating a preform out of dry cut-outs is still very time-consuming and error-prone and thus limits an efficient use of this technology. Especially the high diversity of variants, the material properties and the complexity of the process limited an automation of the preforming process so far. In this paper an automation system is presented, which consists of a robot-based preforming end-effector and its offline path-planning. The end-effector has a highly modular and flexible design and integrates the three essential functions of the preforming process: gripping, draping and heating. Based on a detailed analysis of the geometric parameters of the preforms and its layers the task-specific layout of the end-effector is conducted. To achieve a preform in high-quality a solution for controlling the end-effector and planning the robot-path is necessary. Hence, a semi-automatic approach is developed, which incorporates the know-how of experts and automatically generates layup-curves with path-synchronous trigger signals for the end-effector. In an experimental set up the feasibility and flexibility of the automation solution could be successfully tested. The evaluation on three industrial moulds showed that the challenging requirements and the high quality standards could be met.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Drechsler K (2008) Automatisierung als Schlüssel für die kostengünstige Fertigung von Faserverbund-Leichtbaustrukturen im Flugzeug- und Automobilbau (Automatica 2008). München

  2. Wiedemann M (2009) Status of application in airframe structures and future development process. In: National Agency for Finite Element Methods and Standards (Hrsg.): The analysis advantage: perspectives on engineering simulation for today and beyond. Glasgow: NAFEMS 2009. ISBN: 978-1-87437-642-2

  3. Frauenhofer M, Dilger K, Böhm S, Ströhlein T (2007) Potentiale des induktiven Preformens. ifs-Kolloquium, Braunschweig

  4. Schuh G, Aghassi S, Orilski S, Schubert J, Bambach M, Freudenberg R, Hinke C, Schiffer M (2011) Technology roadmapping for the production in high-wage countries. Prod Eng 5:463–473

    Article  Google Scholar 

  5. Lien TK, Davis PG (2008) A novel gripper for limb materials based on lateral Coanda ejectors. Ann CIRP 57:33–36

    Article  Google Scholar 

  6. Saadat M, Nan P (2002) Industrial applications of automatic manipulation of flexible materials. Ind Robot Int J 29(5):434–443

    Article  Google Scholar 

  7. Seliger G, Szimmat F, Niemeier J, Stephan J (2003) Automated handling of non-rigid parts. Ann CIRP 52(1):21–24

    Article  Google Scholar 

  8. Seliger G, Gutsche C, Hsieh L-H (1992) Process planning and robotic assembly system design for technical textile fabrics. Ann CIRP 41(1):33–36

    Article  Google Scholar 

  9. Stephan J (2001) Beitrag zum Greifen von Textilien. IPK, Berlin. ISBN 3-8167-5622-0

    Google Scholar 

  10. Großmann K, Mühl A, Löser M, Cherif C, Hoffmann G, Torun A (2010) New solutions for the manufacturing of spacer preforms for thermoplastic textile-reinforced lightweight structures. Prod Eng 4:589–597

    Article  Google Scholar 

  11. Kordi MT, Hüsing M, Corves B (2007) Development of a multifunctional robot end-effector system for automated manufacture of textile preforms. (Hrsg.): IEEE/Asme international conference on advanced intelligent mechatronics: IEEE 2008. ISBN: 978-1-4244-1263-1

  12. Mills A (2001) Automation of carbon fibre preform manufacture for affordable aerospace applications. Compos A Appl Sci Manuf 32(7):955–962

    Article  Google Scholar 

  13. Götz R (1991) Strukturierte Planung flexibel automatisierter Montagesysteme für flächige Bauteile (Techn. Univ., Diss.–München, 1991). Berlin: Springer 1991. ISBN: 3-540-54401-1

  14. Reinhart G, Straßer G (2011) Flexible gripping technology for the automated hand-ling of limp technical textiles in composites industry. Prod Eng 5:301–306

    Article  Google Scholar 

  15. Failli F, Dini G (2004) An innovative approach to the automated stacking and grasping of leather plies. Ann CIRP 53(1):31–34

    Article  Google Scholar 

  16. Schutzrecht DE 20 2009 014 155.1 (2010). IMA Ingenieurbüro Anton Abele + Partner GmbH; Technische Universität München. Pr.: 19.10.2009. Ehinger, C.; Haas, B.; Scharrer, J.; Straßer, G.: Vorrichtung zum Legen von flachen Bauteilen, insbesondere von formlabilen Bauteilen, auf ein Formwerkzeug

  17. Reinhart G, Ehinger C (2011) Novel robot-based end-effector design for an automated preforming of limb carbon fiber textiles. In: Schuh G et al. (Hrsg.): Future trends in production engineering: Proceedings of the first conference of the german academic society for production engineering (WGP), Berlin, Germany, 8th-9th June 2011. ISBN: 978-3-642-24490-2

  18. Angerer A, Ehinger C, Hoffmann A, Reif W, Reinhart G (2011) Design of an automation system for preforming processes in aerospace industries. In: Wang MY (Hrsg.): IEEE international conference on automation science and engineering (CASE 2011) Piscataway, NJ: IEEE 2011, p. 557-562. ISBN: 978-1-4577-1730-7

  19. Meyer O (2008) Kurzfaser-Preform-Technologie zur kraftflussgerechten Herstellung von Faserverbundbauteilen. <http://d-nb.info/988375435>. Stuttgart: 2008

  20. Greb C, Schnabel A, Gries T, Kruse F (2010) Development of new preforming processes for high performance fibre-reinforced plastic (FRP) components. Sampe J 5:42–51

    Google Scholar 

  21. Brecher C, Emonts M (2011) Automatisierte Handhabung für die FVK-Großserienproduktion. In: 17. Nationales Symposium SAMPE Deutschland e. V. (Hrsg.): Faserverbundwerkstoffe 2011

  22. Köhler G, Ochs A, Schneider M (2009) Automatisierung in der Leichtbauproduktion. wt Werkstattstechnik online 99(9):614–617

    Google Scholar 

Download references

Acknowledgments

This paper presents the results of the conjoined research project CFK-Tex, which was funded by the European Union and the Free State of Bavaria within the program for micro-systems technology. Besides the research institutions iwb Application Center (Technische Universität München) and ISSE (Universität Augsburg) the following companies supported the research activities: Premium Aerotec GmbH, eurocopter Germany GmbH, KUKA Roboter GmbH, IMA A. Abele+Partner GmbH and TopCut-Bullmer GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Ehinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehinger, C., Reinhart, G. Robot-based automation system for the flexible preforming of single-layer cut-outs in composite industry. Prod. Eng. Res. Devel. 8, 559–565 (2014). https://doi.org/10.1007/s11740-014-0546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0546-y

Keywords

Navigation