Skip to main content
Log in

Analysis of defect mechanisms in polishing of tool steels

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The polishing process in the mold and die making industries is nowadays still predominantly done manually. As a consequence of this the quality of the mold strongly depends on the worker’s skill, experience and also on his form on the day, patience and concentration. Furthermore, polishing is in most cases the last manufacturing step of the process chain and occurring surface defects are critical and often a “knock-out-criterion”. Until now there exists no systematical acquisition or explanation for the appearance of this polishing defects. This paper shows the results of experiments describing the polishing process and defect mechanisms in order to generate process strategies for manufacturing “defect-free” high-gloss polished tool steel surfaces. Ten different steel grades were analyzed in order to see how the final surface quality is influenced by e.g. the polishing system, the degree of purity or the microstructure. The surface quality is represented by roughness values and SEM-images. It could be concluded that the degree of purity and the homogeneity of the steel material are crucial to the final surface quality. The lower the amount of inclusions, the better the surface quality. Furthermore, a classification of the occurred defects during the polishing process is shown in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Altan T et al (1993) Advanced techniques for die and mould manufacturing. Ann CIRP 42/2:707–716

    Google Scholar 

  2. Aghan RL, Samuels LE (1970) Mechanisms of abrasive polishing. Wear 16:293–301

    Article  Google Scholar 

  3. Hambücker S (2001) Technologie der Politur sphärischer Optiken mit Hilfe der Synchrospeed-Kinematik, Dissertation RWTH Aachen, S. 47, 88, 103–105

  4. Horne DF (1972) Optical production technology. Adam Hilger Ltd., Bristol, pp 9–17

    Google Scholar 

  5. Klocke F, Hambücker S, Dambon O (2002) Influence exerted by the pad material and polishing suspension on reproducibility of a polishing process, production engineering. Ann Ger Acad Soc Prod Eng, vol 9, No.2, pp 51–54

  6. Klocke F, Dambon O, Zunke R (2008) Modeling of contact behavior between polishing pad and workpiece surface, production engineering. Ann Ger Acad Soc Prod Eng vol 2, No.1

  7. Denkena B, Lütjens G, Böß V (2003) Feinbearbeitung von Werkzeugen und Formen. Automatisiertes Schleifen und Bandschleifen von Freiformflächen im Praxiseinsatz. Wt Werkstattstechnik online H. 11. www.werkstattstechnik.de/wt/2003/11/03.htm. S 729–734

  8. Dambon O (2005) Das Polieren von Stahl für den Werkzeug- und Formenbau. Dissertation, RWTH Aachen, Shaker Verlag

  9. Preston FW (1927) The theory and design of plate glass polishing machines. J Soc Glass Technol, vol 11

  10. Klocke F, Dambon O, Schneider U (1994) Polieren von Stahl für den präzisen Werkzeugbau, wt Werkstattstechnik online, S.71–75

  11. Dambon O et al (2006) Surface interactions in steel polishing for the precision tool making. Ann CIRP 55/1

    Google Scholar 

  12. Zum Gahr K-H (1987) Microstructure and wear of materials, tribology series 10, Elsevier Science, Amsterdam

  13. Deutsches Institut für Normung (2008) DIN EN ISO 25178: Oberflächenbeschaffenheit: Flächenhaft—Teil 2: Begriffe und Oberflächen-Kenngrößen

  14. Deutsches Institut für Normung (1985) DIN 50602: metallographic examination; microscopic examination of special steels using standard diagrams to assess the content of non-metallic inclusions

  15. Rebeggiani S (2009) Polishability of tool steels—characterisation of high gloss polished tool steels, Licentiate Thesis (No. 45), Chalmers University of Technology, Sweden

  16. Pessoles X, Tournier C (2009) Automatic polishing process of plastic injection molds on a 5-axis milling center. J Mat Process Technol 209:3665–3673

    Article  Google Scholar 

  17. Deutsches Institut für Normung e.V. (1999) DIN EN ISO 8785: Geometrische Produktspezifikationen (GPS)—Oberflächenunvollkommenheiten

  18. Scholz-Reiter B, Lütjen M, Lübke K, Thamer H, Hildebrandt T.(2010) Klassifikation von Oberflächenunvollkommenheiten in der Mikrokaltumformung, ZWF–Zeitschrift für wirtschaftlichen Fabrikbetrieb 1–2, S 42–46

  19. Behrens B, Zunke R (2010) Mehr als Fingerspitzengefühl, Zeitschrift Werkzeug und Formenbau Ausgabe 4, p 52–53

  20. Deutsches Institut für Normung (1982) DIN 4760: Gestaltabweichungen

  21. Klocke F, Brecher C, Zunke R, Tücks R, Zymla C, Driemeyer Wilbert A (2010) Hochglänzende Freiformflächen aus Stahlwerkzeugen, wt Werkstattstechnik online, Jahrgang 10, Heft 6

  22. Brecher C, Wenzel C, Tuecks R (2008) Development of a force controlled polishing tool, Proceedings of the 10th euspen International Conference, Zurich, vol I, pp 438–442

Download references

Acknowledgments

The investigations presented in this paper were carried out within the research project SFB/TR4-T3 “Development of Process Strategies for the Manufacturing of Defect Free Surfaces for the Polishing of Tool Steels” funded by the German Research Association, Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Behrens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klocke, F., Dambon, O. & Behrens, B. Analysis of defect mechanisms in polishing of tool steels. Prod. Eng. Res. Devel. 5, 475–483 (2011). https://doi.org/10.1007/s11740-011-0301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-011-0301-6

Keywords

Navigation