Skip to main content
Log in

Cardiac arrest related lung edema: examining the role of downtimes in transpulmonary thermodilution analysis

  • EM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Pulmonary edema and its association with low flow times has been observed in postcardiac arrest patients. However, diagnosis of distinct types of lung pathology is difficult.The aim of this study was to investigate pulmonary edema by transpulmonary thermodilution (TPTD) after out-of-hospital cardiac arrest (OHCA), and the correlation to downtimes. In this retrospective single-center study consecutive patients with return of spontaneous circulation (ROSC) following OHCA, age ≥ 18, and applied TPTD were enrolled. According to downtimes, patients were divided into a short and a long no-flow-time group, and data of TPTD were analysed. We identified 45 patients (n = 25 short no-flow time; n = 20 long no-flow time) who met the inclusion criteria. 24 h after ROSC, the extra vascular lung water index (EVLWI) was found to be lower in the group with short no-flow time compared to the group with long no-flow time (10.7 ± 3.5 ml/kg vs. 12.8 ± 3.9 ml/kg; p = 0.08) and remained at a similar level 48 h (10.9 ± 4.3 ml/kg vs. 12.9 ± 4.9 ml/kg; p = 0.25) and 72 h (11.1 ± 5.0 ml/kg vs. 13.9 ± 7.7 ml/kg; p = 0.27) post-ROSC. We found a statistically significant and moderate correlation between no-flow duration and EVLWI 48 h (r = 0.51; p = 0.002) and 72 h (r = 0.54; p = 0.004) post-ROSC. Pulmonary vascular permeability index (PVPI) was not correlated with downtimes. Our observation underlines the presence of cardiac arrest-related lung edema by determination of EVLWI. The duration of no-flow times is a relevant factor for increased extravascular lung water index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data will be available for reasonable requests.

References

  1. Benjamin EJ, Muntner P, Alonso A et al (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139:e56–e528. https://doi.org/10.1161/CIR.0000000000000659

    Article  PubMed  Google Scholar 

  2. Gräsner J-T, Wnent J, Herlitz J et al (2020) Survival after out-of-hospital cardiac arrest in Europe—results of the EuReCa TWO study. Resuscitation 148:218–226. https://doi.org/10.1016/j.resuscitation.2019.12.042

    Article  PubMed  Google Scholar 

  3. Nolan JP, Sandroni C, Böttiger BW et al (2021) European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: post-resuscitation care. Resuscitation 161:220–269. https://doi.org/10.1016/j.resuscitation.2021.02.012

    Article  PubMed  Google Scholar 

  4. Mongardon N, Dumas F, Ricome S et al (2011) Postcardiac arrest syndrome: from immediate resuscitation to long-term outcome. Ann Intensive Care 1:45. https://doi.org/10.1186/2110-5820-1-45

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dohi S (1983) Postcardiopulmonary resuscitation pulmonary edema. Crit Care Med 11:434–437. https://doi.org/10.1097/00003246-198306000-00008

    Article  CAS  PubMed  Google Scholar 

  6. Johnson NJ, Caldwell E, Carlbom DJ et al (2019) The acute respiratory distress syndrome after out-of-hospital cardiac arrest: Incidence, risk factors, and outcomes. Resuscitation 135:37–44. https://doi.org/10.1016/j.resuscitation.2019.01.009

    Article  PubMed  Google Scholar 

  7. Adrie C, Laurent I, Monchi M et al (2004) Postresuscitation disease after cardiac arrest: a sepsis-like syndrome? Curr Opin Crit Care 10:208–212. https://doi.org/10.1097/01.ccx.0000126090.06275.fe

    Article  PubMed  Google Scholar 

  8. Yao Y, Johnson NJ, Perman SM et al (2018) Myocardial dysfunction after out-of-hospital cardiac arrest: predictors and prognostic implications. Intern Emerg Med 13:765–772. https://doi.org/10.1007/s11739-017-1756-z

    Article  PubMed  Google Scholar 

  9. Jentzer JC, Anavekar NS, Mankad SV et al (2018) Echocardiographic left ventricular diastolic dysfunction predicts hospital mortality after out-of-hospital cardiac arrest. J Crit Care 47:114–120. https://doi.org/10.1016/j.jcrc.2018.06.016

    Article  PubMed  Google Scholar 

  10. Schick A, Prekker ME, Kempainen RR et al (2022) Association of hypoxic ischemic brain injury on early CT after out of hospital cardiac arrest with neurologic outcome. Am J Emerg Med 54:257–262. https://doi.org/10.1016/j.ajem.2022.02.003

    Article  PubMed  Google Scholar 

  11. Liu Z, Liu Q, Wu G et al (2018) Quantitative CT assessment of lung injury after successful cardiopulmonary resuscitation in a porcine cardiac arrest model of different downtimes. Quant Imaging Med Surg 8:946–956. https://doi.org/10.21037/qims.2018.10.04

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shih JA, Robertson HK, Issa MS et al (2022) Acute respiratory distress syndrome after in-hospital cardiac arrest. Resuscitation 177:78–84. https://doi.org/10.1016/j.resuscitation.2022.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  13. Magliocca A, Rezoagli E, Zani D et al (2021) Cardiopulmonary resuscitation-associated lung edema (CRALE). A translational study. Am J Respir Crit Care Med 203:447–457. https://doi.org/10.1164/rccm.201912-2454OC

    Article  PubMed  Google Scholar 

  14. Kang D-H, Kim J, Rhee JE et al (2015) The risk factors and prognostic implication of acute pulmonary edema in resuscitated cardiac arrest patients. Clin Exp Emerg Med 2:110–116. https://doi.org/10.15441/ceem.14.016

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim J, Kim T, Kim K et al (2013) Risk factors and prognostic implication of acute pulmonary edema in resuscitated out-of-hospital cardiac arrest patients. Resuscitation 84:S78. https://doi.org/10.1016/j.resuscitation.2013.08.199

    Article  Google Scholar 

  16. Johnson NJ, Town JA (2022) Don’t go breaking my…lungs? The acute respiratory distress syndrome is common, deadly, and probably underrecognized after cardiac arrest. Resuscitation 177:1–2. https://doi.org/10.1016/j.resuscitation.2022.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ar P, Ja B, Jg C et al (2020) Part 3: adult basic and advanced life support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. https://doi.org/10.1161/CIR.0000000000000916

    Article  Google Scholar 

  18. Snashall PD, Keyes SJ, Morgan BM et al (1981) The radiographic detection of acute pulmonary oedema. A comparison of radiographic appearances, densitometry and lung water in dogs. Br J Radiol 54:277–288. https://doi.org/10.1259/0007-1285-54-640-277

    Article  CAS  PubMed  Google Scholar 

  19. Zeeuw van der Laan EAN, van der Velden S, Porcelijn L et al (2020) Update on the pathophysiology of transfusion-related acute lung injury. Curr Opin Hematol 27:386–391. https://doi.org/10.1097/MOH.0000000000000607

    Article  CAS  PubMed  Google Scholar 

  20. Jozwiak M, Teboul J-L, Monnet X (2015) Extravascular lung water in critical care: recent advances and clinical applications. Ann Intensive Care 5:38. https://doi.org/10.1186/s13613-015-0081-9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cecconi M, De Backer D, Antonelli M et al (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 40:1795–1815. https://doi.org/10.1007/s00134-014-3525-z

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fischer M, Wnennt J, Gräsner J-T et al (2021) Öffentlicher Jahresbericht 2021 des Deutschen Reanimationsregisters: Außerklinische Reanimation

  23. Yang Z, Zheng H, Lin L et al (2019) Alterations in respiratory mechanics and neural respiratory drive after restoration of spontaneous circulation in a porcine model subjected to different downtimes of cardiac arrest. J Am Heart Assoc. https://doi.org/10.1161/JAHA.119.012441

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bhattacharjee A, Pradhan D, Bhattacharyya P et al (2017) How useful is extravascular lung water measurement in managing lung injury in intensive care unit? Indian J Crit Care Med Peer-Rev 21:494. https://doi.org/10.4103/ijccm.IJCCM_40_17

    Article  Google Scholar 

  25. Rasch S, Schmidle P, Sancak S et al (2021) Increased extravascular lung water index (EVLWI) reflects rapid non-cardiogenic oedema and mortality in COVID-19 associated ARDS. Sci Rep 11:11524. https://doi.org/10.1038/s41598-021-91043-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oksanen T, Skrifvars M, Wilkman E et al (2014) Postresuscitation hemodynamics during therapeutic hypothermia after out-of-hospital cardiac arrest with ventricular fibrillation: a retrospective study. Resuscitation 85:1018–1024. https://doi.org/10.1016/j.resuscitation.2014.04.026

    Article  PubMed  Google Scholar 

  27. Geri G, Richard J-C (2021) Cardiopulmonary resuscitation–associated lung edema: the price to pay to get the heartbeat? Am J Respir Crit Care Med 203:405–406. https://doi.org/10.1164/rccm.202009-3445ED

    Article  PubMed  PubMed Central  Google Scholar 

  28. Saugel B, Wildgruber M, Staudt A et al (2019) Quantitative computed tomography in comparison with transpulmonary thermodilution for the estimation of pulmonary fluid status: a clinical study in critically ill patients. J Clin Monit Comput. https://doi.org/10.1007/s10877-018-0144-1

    Article  PubMed  PubMed Central  Google Scholar 

  29. Saugel B, Holzapfel K, Stollfuss J et al (2011) Computed tomography to estimate cardiac preload and extravascular lung water. A retrospective analysis in critically ill patients. Scand J Trauma Resusc Emerg Med 19:31. https://doi.org/10.1186/1757-7241-19-31

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bro-Jeppesen J, Kjaergaard J, Wanscher M et al (2015) Systemic inflammatory response and potential prognostic implications after out-of-hospital cardiac arrest: a substudy of the target temperature management trial. Crit Care Med 43:1223–1232. https://doi.org/10.1097/CCM.0000000000000937

    Article  CAS  PubMed  Google Scholar 

  31. Langeland H, Damås JK, Mollnes TE et al (2022) The inflammatory response is related to circulatory failure after out-of-hospital cardiac arrest: a prospective cohort study. Resuscitation 170:115–125. https://doi.org/10.1016/j.resuscitation.2021.11.026

    Article  PubMed  Google Scholar 

  32. Bro-Jeppesen J, Kjaergaard J, Wanscher M et al (2014) The inflammatory response after out-of-hospital cardiac arrest is not modified by targeted temperature management at 33 °C or 36 °C. Resuscitation 85:1480–1487. https://doi.org/10.1016/j.resuscitation.2014.08.007

    Article  PubMed  Google Scholar 

  33. Braunstein M, Williamson M, Kusmenkov T et al (2017) Significant cytokine mRNA expression changes immediately after initiation of cardiopulmonary resuscitation. Mediat Inflamm 2017:1–10. https://doi.org/10.1155/2017/8473171

    Article  CAS  Google Scholar 

  34. Park Y, Tae H-J, Cho JH et al (2018) The relationship between low survival and acute increase of tumor necrosis factor α expression in the lung in a rat model of asphyxial cardiac arrest. Anat Cell Biol 51:128–135. https://doi.org/10.5115/acb.2018.51.2.128

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kovács E, Pilecky D, Becker D et al (2012) Hemodynamic changes and invasive hemodynamic monitoring during post-resuscitation therapeutic hypothermia (preliminary data). Resuscitation 83:e96–e97. https://doi.org/10.1016/j.resuscitation.2012.08.250

    Article  Google Scholar 

  36. Kovács E, Gyarmathy VA, Pilecky D et al (2021) An interaction effect analysis of thermodilution-guided hemodynamic optimization, patient condition, and mortality after successful cardiopulmonary resuscitation. Int J Environ Res Public Health 18:5223. https://doi.org/10.3390/ijerph18105223

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

IV conceptualization, methodology, investigation, writing—original draft, writing—review and editing, visualization. MM investigation, writing—review and editing. HW, OB writing—review and editing, supervision.

Corresponding author

Correspondence to Ingo Voigt.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Ethical Statement

Ethical approval was waived by the Ethics Committee of the regional Medical Association (North-Rhine; Nr. 20210506) because of the retrospective nature of the study, and all the procedures performed were part of routine care. Procedures were followed in accordance with the ethical and data protection standards of the approving committees and with the Helsinki Declaration of 1975.

Informed consent

For this study Informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11739_2023_3420_MOESM1_ESM.pdf

Supplementary file1 Online Resource 1 Inflammatory biomarkers post- ROSC : At admission (Leuko0,CRP0), 24h (Leuko24,CRP24), 48h (Leuko48,CRP48) and 72h(Leuko72,CRP72) post-ROSC (PDF 93 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voigt, I., Mighali, M., Wieneke, H. et al. Cardiac arrest related lung edema: examining the role of downtimes in transpulmonary thermodilution analysis. Intern Emerg Med 19, 501–509 (2024). https://doi.org/10.1007/s11739-023-03420-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-023-03420-7

Keywords

Navigation