Skip to main content
Log in

The lung microbiome: clinical and therapeutic implications

  • IM - REVIEW
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

The human respiratory tract, usually considered sterile, is currently being investigated for human-associated microbial communities. According to Dickson's conceptual model, the lung microbiota (LMt) is a dynamic ecosystem, whose composition, in healthy lungs, is likely to reflect microbial migration, reproduction, and elimination. However, which microbial genera constitutes a “healthy microbiome” per se remains hotly debated. It is now widely accepted that a bi-directional gut-lung axis connects the intestinal with the pulmonary microbiota and that the diet could have a role in modulating both microbiotas as in health as in pathological status. The LMt is altered in numerous respiratory disorders such as obstructive airway diseases, interstitial lung diseases, infections, and lung cancer. Some authors hypothesize that the use of specific bacterial strains, termed “probiotics,” with positive effects on the host immunity and/or against pathogens, could have beneficial effects in the treatment of intestinal disorders and pulmonary diseases. In this manuscript, we have reviewed the literature available on the LMt to delineate and discuss the potential relationship between composition alterations of LMt and lung diseases. Finally, we have reported some meaningful clinical studies that used integrated probiotics’ treatments to contrast some lung-correlated disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lederberg BJ, McCray AT (2001) ’Ome sweet’ omics—a genealogical treasury of words. Sci 15:8. https://doi.org/10.1110/ps.9.11.2181

    Article  Google Scholar 

  2. Marchesi JR, Ravel J (2015) The vocabulary of microbiome research: a proposal. Microbiome 3:31. https://doi.org/10.1186/s40168-015-0094-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. https://doi.org/10.1038/nature11053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar M, Babaei P, Ji B, Nielsen J (2016) Human gut microbiota and healthy aging: recent developments and future prospective. Nutr Health Age 4:3–16. https://doi.org/10.3233/NHA-150002

    Article  Google Scholar 

  5. Laterza L, Rizzatti G, Gaetani E et al (2016) The gut microbiota and immune system relationship in human graft-versus-host disease. Mediterr J Hematol Infect Dis 8:e2016025–e2016025. https://doi.org/10.4084/MJHID.2016.025

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ames NJ, Ranucci A, Moriyama B, Wallen GR (2017) The human microbiome and understanding the 16S rRNA gene in translational nursing science. Nurs Res 66:184–197. https://doi.org/10.1097/NNR.0000000000000212

    Article  PubMed  PubMed Central  Google Scholar 

  7. Faner R, Sibila O, Agustí A et al (2017) The microbiome in respiratory medicine: current challenges and future perspectives. Eur Respir J 49:1–12. https://doi.org/10.1183/13993003.02086-2016

    Article  Google Scholar 

  8. Budden KF, Shukla SD, Rehman SF et al (2019) Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med 2600:1–14. https://doi.org/10.1016/S2213-2600(18)30510-1

    Article  Google Scholar 

  9. Ahmed B, Cox MJ, Cuthbertson L (2019) Growing up with your airway microbiota: a risky business. Thorax 74:525 LP-526. https://doi.org/10.1136/thoraxjnl-2019-213162

    Article  PubMed  Google Scholar 

  10. Niccolai E, Boem F, Russo E, Amedei A (2019) The gut–brain axis in the neuropsychological disease model of obesity: a classical movie revised by the emerging director “microbiome”. Nutrients 11:156. https://doi.org/10.3390/nu11010156

    Article  CAS  PubMed Central  Google Scholar 

  11. Amedei A, Boem F (2018) I’ve gut a feeling: microbiota impacting the conceptual and experimental perspectives of personalized medicine. Int J Mol Sci 19:3756. https://doi.org/10.3390/ijms19123756

    Article  PubMed Central  Google Scholar 

  12. Russo E, Bacci G, Chiellini C et al (2018) Preliminary comparison of oral and intestinal human microbiota in patients with colorectal cancer: a pilot study. Front Microbiol 8:2699. https://doi.org/10.3389/fmicb.2017.02699

    Article  PubMed  PubMed Central  Google Scholar 

  13. Beck JM, Young VB, Huffnagle GB (2012) The microbiome of the lung. Transl Res 160:258–266. https://doi.org/10.1016/j.trsl.2012.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cui L, Morris A, Huang L et al (2014) The microbiome and the lung. Ann. Am. Thorac, Soc

    Book  Google Scholar 

  15. Dickson RP, Erb-Downward JR, Prescott HC et al (2015) Intraalveolar catecholamines and the human lung microbiome. Am J Respir Crit Care Med 192:257–259. https://doi.org/10.1164/rccm.201502-0326LE

    Article  PubMed  PubMed Central  Google Scholar 

  16. Charlson ES, Bittinger K, Haas AR et al (2011) Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184:957–963. https://doi.org/10.1164/rccm.201104-0655OC

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lemon KP, Klepac-Ceraj V, Schiffer HK et al (2010) Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. MBio 1:e00129–e210. https://doi.org/10.1128/mBio.00129-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Segal LN, Alekseyenko AV, Clemente JC et al (2013) Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 1:19. https://doi.org/10.1186/2049-2618-1-19

    Article  PubMed Central  PubMed  Google Scholar 

  19. Mathieu E, Escribano-Vazquez U, Descamps D et al (2018) Paradigms of lung microbiota functions in health and disease, particularly, in asthma. Front Physiol 9:1–11. https://doi.org/10.3389/fphys.2018.01168

    Article  Google Scholar 

  20. Bassis CM, Erb-Downward JR, Dickson RP et al (2015) Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio 6

  21. Dickson RP, Erb-Downward JR, Huffnagle GB (2015) Homeostasis and its disruption in the lung microbiome. Am J Physiol Lung Cell Mol Physiol. https://doi.org/10.1152/ajplung.00279.2015

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kasubuchi M, Hasegawa S, Hiramatsu T et al (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7:2839–2849. https://doi.org/10.3390/nu7042839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Günther A, Siebert C, Schmidt R et al (1996) Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am J Respir Crit Care Med 153:176–184. https://doi.org/10.1164/ajrccm.153.1.8542113

    Article  PubMed  Google Scholar 

  24. Zhang X, Essmann M, Burt ET, Larsen B (2000) Estrogen effects on Candida albicans: a potential virulence-regulating mechanism. J Infect Dis 181:1441–1446

    Article  CAS  PubMed  Google Scholar 

  25. Zaborina O, Lepine F, Xiao G et al (2007) Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa. PLoS Pathog 3:e35–e35. https://doi.org/10.1371/journal.ppat.0030035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. https://doi.org/10.1038/nature09944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Papa E, Docktor M, Smillie C et al (2012) Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS ONE 7:e39242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turnbaugh PJ, Ridaura VK, Faith JJ, et al (2009) The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Sci Transl Med 1:6ra14 LP-6ra14

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rinninella E, Raoul P, Cintoni M et al (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7:14. https://doi.org/10.3390/microorganisms7010014

    Article  CAS  PubMed Central  Google Scholar 

  30. Bull MJ, Plummer NT (2014) Part 1: the human gut microbiome in health and disease. Integr Med (Encinitas) 13:17–22

    Google Scholar 

  31. Dang AT, Marsland BJ (2019) Microbes, metabolites, and the gut–lung axis. Mucosal Immunol 12:843–850. https://doi.org/10.1038/s41385-019-0160-6

    Article  CAS  PubMed  Google Scholar 

  32. Wypych TP, Wickramasinghe LC, Marsland BJ (2019) The influence of the microbiome on respiratory health. Nat Immunol. https://doi.org/10.1038/s41590-019-0451-9

    Article  PubMed  Google Scholar 

  33. Kalliomäki M, Kirjavainen P, Eerola E et al (2001) Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 107:129–134. https://doi.org/10.1067/mai.2001.111237

    Article  PubMed  Google Scholar 

  34. Ichinohe T, Pang IK, Kumamoto Y, et al (2011) Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci 108:5354 LP-5359

    Article  CAS  Google Scholar 

  35. Qian G, Jiang W, Zou B et al (2018) LPS inactivation by a host lipase allows lung epithelial cell sensitization for allergic asthma. J Exp Med 215:2397–2412. https://doi.org/10.1084/jem.20172225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coopersmith C, Stromberg P, Davis G et al (2003) Sepsis from Pseudomonas aeruginosa pneumonia decreases intestinal proliferation and induces gut epithelial cell cycle arrest. Crit Care Med 31:1630–1637. https://doi.org/10.1097/01.CCM.0000055385.29232.11

    Article  PubMed  Google Scholar 

  37. Burke DG, Fouhy F, Harrison MJ et al (2017) The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol 17:58. https://doi.org/10.1186/s12866-017-0968-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. S Anand SS Mande 2018 Diet front microbiol microbiota and gut-lung connection 10.3389/fmicb.2018.02147

  39. Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R (2011) Regulation of inflammation by short chain fatty acids. Nutrients 3:858–876. https://doi.org/10.3390/nu3100858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Samuelson DR, Welsh DA, Shellito JE (2015) Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol 6:1085. https://doi.org/10.3389/fmicb.2015.01085

    Article  PubMed  PubMed Central  Google Scholar 

  41. McGhee JR, Fujihashi K (2012) Inside the mucosal immune system. PLOS Biol 10:e1001397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang R, Chen L, Cao L et al (2018) Effects of smoking on the lower respiratory tract microbiome in mice. Respir Res 19:253. https://doi.org/10.1186/s12931-018-0959-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Erb-Downward JR, Thompson DL, Han MK et al (2011) Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS ONE 6:e16384–e16384. https://doi.org/10.1371/journal.pone.0016384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Panzer AR, Lynch SV, Langelier C et al (2017) Lung microbiota is related to smoking status and to development of acute respiratory distress syndrome in critically ill trauma patients. Am J Respir Crit Care Med 197:621–631. https://doi.org/10.1164/rccm.201702-0441OC

    Article  Google Scholar 

  45. Global Initiative for Chronic Obstructive Lung Disease (2019) GOLD Report 2019. 1–155

  46. Di Stefano A, Ricciardolo FLM, Caramori G, et al (2017) Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. Eur Respir J 49:

  47. Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hilty M, Burke C, Pedro H et al (2010) Disordered microbial communities in asthmatic airways. PLoS ONE 5:e8578–e8578. https://doi.org/10.1371/journal.pone.0008578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sze MA, Dimitriu PA, Hayashi S et al (2012) The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185:1073–1080. https://doi.org/10.1164/rccm.201111-2075OC

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sze MA, Dimitriu PA, Suzuki M et al (2015) Host response to the lung microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 192:438–445. https://doi.org/10.1164/rccm.201502-0223OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang L, Hao K, Yang T, Wang C (2017) Role of the lung microbiome in the pathogenesis of chronic obstructive pulmonary disease. Chin Med J (Engl) 130(17):2107–2111. https://doi.org/10.4103/0366-6999.211452

    Article  Google Scholar 

  52. Leitao Filho FS, Alotaibi NM, Ngan D et al (2018) Sputum microbiome is associated with 1-year mortality following COPD hospitalizations. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.201806-1135OC

    Article  Google Scholar 

  53. Mayhew D, Devos N, Lambert C et al (2018) Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax 73:422–430. https://doi.org/10.1136/thoraxjnl-2017-210408

    Article  PubMed  Google Scholar 

  54. Sullivan A, Hunt E, MacSharry J, Murphy DM (2016) The microbiome and the pathophysiology of asthma. Respir Res 17:163. https://doi.org/10.1186/s12931-016-0479-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stiemsma LT, Turvey SE (2017) Asthma and the microbiome: defining the critical window in early life. Allergy Asthma Clin Immunol 13:3. https://doi.org/10.1186/s13223-016-0173-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fujimura KE, Sitarik AR, Havstad S et al (2016) Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 22:1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stokholm J, Blaser MJ, Thorsen J et al (2018) Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun 9:141. https://doi.org/10.1038/s41467-017-02573-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Olszak T, An D, Zeissig S, et al (2012) Microbial exposure during early life has persistent effects on natural killer t cell function. Science 80(336):489 LP-493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dales RE, Zwanenburg H, Burnett R, Franklin CA (1991) Respiratory health effects of home dampness and molds among canadian children. Am J Epidemiol 134:196–203

    Article  CAS  PubMed  Google Scholar 

  60. Arrieta M-C, Stiemsma LT, Dimitriu PA, et al (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7:307ra152 LP-307ra152

    Article  PubMed  Google Scholar 

  61. Raghu G, Collard HR, Egan JJ et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824. https://doi.org/10.1164/rccm.2009-040GL

    Article  PubMed  PubMed Central  Google Scholar 

  62. Han MK, Zhou Y, Murray S et al (2014) Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respir Med 2:548–556. https://doi.org/10.1016/S2213-2600(14)70069-4

    Article  PubMed  PubMed Central  Google Scholar 

  63. Salisbury ML, Han MK, Dickson RP, Molyneaux PL (2017) Microbiome in interstitial lung disease: from pathogenesis to treatment target. Curr Opin Pulm Med 23:404–410. https://doi.org/10.1097/MCP.0000000000000399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Molyneaux PL, Cox MJ, Willis-Owen SAG et al (2014) The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 190:906–913. https://doi.org/10.1164/rccm.201403-0541OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Molyneaux PL, Maher TM (2013) The role of infection in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir Rev 22:376 LP-381

    Article  PubMed  Google Scholar 

  66. Dickson RP, Erb-Downward JR, Freeman CM et al (2015) Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc 12:821–830. https://doi.org/10.1513/AnnalsATS.201501-029OC

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zakharkina T, Martin-Loeches I, Matamoros S, et al (2017) The dynamics of the pulmonary microbiome during mechanical ventilation in the intensive care unit and the association with occurrence of pneumonia. Thorax 72:803 LP-810. https://doi.org/10.1136/thoraxjnl-2016-209158

    Article  PubMed  Google Scholar 

  68. Flierl MA, Rittirsch D, Nadeau BA et al (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449:721

    Article  CAS  PubMed  Google Scholar 

  69. Dickson RP, Erb-Downward JR, Prescott HC et al (2014) Analysis of culture-dependent versus culture-independent techniques for identification of bacteria in clinically obtained bronchoalveolar lavage fluid. J Clin Microbiol 52:3605–3613. https://doi.org/10.1128/JCM.01028-14

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cho WCS, Kwan CK, Yau S et al (2011) The role of inflammation in the pathogenesis of lung cancer. Expert Opin Ther Targets 15:1127–1137. https://doi.org/10.1517/14728222.2011.599801

    Article  CAS  PubMed  Google Scholar 

  71. Mejri I, Ourari B, Cherif H, et al (2016) Pulmonary tuberculosis and lung cancer: A complex interaction. Eur Respir J 48

  72. Lee SH, Sung JY, Yong D et al (2016) Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer 102:89–95. https://doi.org/10.1016/j.lungcan.2016.10.016

    Article  PubMed  Google Scholar 

  73. Yan X, Yang M, Liu J et al (2015) Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res 5:3111–3122

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Toh ZQ, Anzela A, Tang M, Licciardi P (2012) Probiotic therapy as a novel approach for allergic disease. Front Pharmacol 3:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mortaz E, Adcock IM, Ricciardolo FLM, et al (2015) in vitro administration of L. rhamnosus and B. breve suppresses the pro-inflammatory mediators induced by exposure of macrophages to cigarette smoke. These findings may indicate importance of probiotics in treatment of cigarette smoke induced diseases lik. PLoS One 10:e0136455

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zuccotti G, Meneghin F, Aceti A et al (2015) Probiotics for prevention of atopic diseases in infants: systematic review and meta-analysis. Allergy 70:1356–1371. https://doi.org/10.1111/all.12700

    Article  CAS  PubMed  Google Scholar 

  77. Lerner A, Shoenfeld Y, Matthias T (2019) Probiotics: if it does not help it does not do any harm. Really? Microorganisms 7:104. https://doi.org/10.3390/microorganisms7040104

    Article  PubMed Central  Google Scholar 

  78. Cummings JH, Macfarlane GT, Englyst HN (2001) Prebiotic digestion and fermentation. Am J Clin Nutr 73:415s–420s. https://doi.org/10.1093/ajcn/73.2.415s

    Article  CAS  PubMed  Google Scholar 

  79. Garcia-Larsen V, Del Giacco SR, Moreira A et al (2016) Asthma and dietary intake: an overview of systematic reviews. Allergy 71:433–442. https://doi.org/10.1111/all.12800

    Article  CAS  PubMed  Google Scholar 

  80. Shi LH, Balakrishnan K, Thiagarajah K, et al (2016) Beneficial Properties of Probiotics. Trop life Sci Res 27:73–90. https://doi.org/10.21315/tlsr2016.27.2.6

    Article  Google Scholar 

  81. Sivan A, Corrales L, Hubert N et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089. https://doi.org/10.1126/science.aac4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Daillère R, Vétizou M, Waldschmitt N et al (2016) Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45:931–943. https://doi.org/10.1016/j.immuni.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  83. Huang YJ, Sethi S, Murphy T et al (2014) Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol 52:2813–2823. https://doi.org/10.1128/JCM.00035-14

    Article  PubMed  PubMed Central  Google Scholar 

  84. Becker AB, Abrams EM (2017) Asthma guidelines : the Global Initiative for Asthma in relation to national guidelines. 99–103. https://doi.org/10.1097/ACI.0000000000000346

    Article  PubMed  Google Scholar 

  85. Denner DR, Sangwan N, Becker JB et al (2016) Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. J Allergy Clin Immunol 137:1398–1405.e3. https://doi.org/10.1016/j.jaci.2015.10.017

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was unfunded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedeo Amedei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest related to the present manuscript.

Statement of human and animal rights

This article does not contain any studies with animals performed by any of the authors.

Informed consent

All participants provided informed consent prior to their participation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabbrizzi, A., Amedei, A., Lavorini, F. et al. The lung microbiome: clinical and therapeutic implications. Intern Emerg Med 14, 1241–1250 (2019). https://doi.org/10.1007/s11739-019-02208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-019-02208-y

Keywords

Navigation