Skip to main content

Advertisement

Log in

The current understanding of trauma-induced coagulopathy (TIC): a focused review on pathophysiology

  • EM - REVIEW
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

The emergency management of acute severe bleeding in trauma patients has changed significantly in recent years. In particular, greater attention is now being devoted to a prompt assessment of coagulation alterations, which allows for immediate haemostatic resuscitation procedures when necessary. The importance of an early trauma-induced coagulopathy (TIC) diagnosis has led physicians to increase the efforts to better understand the pathophysiological alterations observed in the haemostatic system after traumatic injuries. As yet, the knowledge of TIC is not exhaustive, and further studies are needed. The aim of this review is to gather all the currently available data and information in an attempt to gain a better understanding of TIC. A comprehensive literature search was performed using MEDLINE database. The bibliographies of relevant articles were screened for additional publications. In major traumas, coagulopathic bleeding stems from a complex interplay among haemostatic and inflammatory systems, and is characterized by a multifactorial dysfunction. In the abundance of biochemical and pathophysiological changes occurring after trauma, it is possible to discern endogenously induced primary predisposing conditions and exogenously induced secondary predisposing conditions. TIC remains one of the most diagnostically and therapeutically challenging condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Norton R, Kobusingye O (2013) Injuries. N Engl J Med 368(18):1723–1730

    Article  CAS  PubMed  Google Scholar 

  2. ISTAT CDD (2012) Le principali cause di morte in Italia. Available at: http://www.istat.it/it/files/2014/12/Principali_cause_morte_2012.pdf?title

  3. Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA et al (1995) Epidemiology of trauma deaths: a reassessment. J Trauma 38(2):185–193

    Article  CAS  PubMed  Google Scholar 

  4. Valdez C, Sarani B, Young H, Amdur R, Dunne J, Chawla LS (2016) Timing of death after traumatic injury—a contemporary assessment of the temporal distribution of death. J Surg Res 200(2):604–609

    Article  PubMed  Google Scholar 

  5. Evans JA, van Wessem KJ, McDougall D, Lee KA, Lyons T, Balogh ZJ (2010) Epidemiology of traumatic deaths: comprehensive population-based assessment. World J Surg 34(1):158–163

    Article  PubMed  Google Scholar 

  6. Frith D, Davenport R, Brohi K (2012) Acute traumatic coagulopathy. Curr Opin Anaesthesiol 25(2):229–234

    Article  PubMed  Google Scholar 

  7. Stensballe J, Ostrowski SR, Johansson PI (2016) Haemostatic resuscitation in trauma: the next generation. Curr Opin Crit Care 22(6):591–597

    Article  PubMed  Google Scholar 

  8. Hoffman M, Monroe DM 3rd (2001) A cell-based model of hemostasis. Thromb Haemost 85(6):958–965

    CAS  PubMed  Google Scholar 

  9. Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359(9):938–949

    Article  CAS  PubMed  Google Scholar 

  10. Whelihan MF, Mann KG (2013) The role of the red cell membrane in thrombin generation. Thromb Res 131(5):377–382

    Article  CAS  PubMed  Google Scholar 

  11. Katrancha ED, Gonzalez LS 3rd (2014) Trauma-induced coagulopathy. Crit Care Nurse 34(4):54–63

    Article  PubMed  Google Scholar 

  12. Frith D, Goslings JC, Gaarder C, Maegele M, Cohen MJ, Allard S et al (2010) Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. J Thromb Haemost 8(9):1919–1925

    Article  CAS  PubMed  Google Scholar 

  13. Kutcher ME, Xu J, Vilardi RF, Ho C, Esmon CT, Cohen MJ (2012) Extracellular histone release in response to traumatic injury: implications for a compensatory role of activated protein C. J Trauma Acute Care Surg 73(6):1389–1394

    Article  PubMed  Google Scholar 

  14. Margraf S, Logters T, Reipen J, Altrichter J, Scholz M, Windolf J (2008) Neutrophil-derived circulating free DNA (cf-DNA/NETs): a potential prognostic marker for posttraumatic development of inflammatory second hit and sepsis. Shock 30(4):352–358

    Article  CAS  PubMed  Google Scholar 

  15. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR (2012) High circulating adrenaline levels at admission predict increased mortality after trauma. J Trauma Acute Care Surg 72(2):428–436

    Article  CAS  PubMed  Google Scholar 

  16. Chang R, Cardenas JC, Wade CE, Holcomb JB (2016) Advances in the understanding of trauma-induced coagulopathy. Blood 128(8):1043–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gando S, Hayakawa M (2016) Pathophysiology of trauma-induced coagulopathy and management of critical bleeding requiring massive transfusion. Semin Thromb Hemost 42(2):155–165

    PubMed  Google Scholar 

  18. Brohi K, Singh J, Heron M, Coats T (2003) Acute traumatic coagulopathy. J Trauma 54(6):1127–1130

    Article  PubMed  Google Scholar 

  19. Carroll RC, Craft RM, Langdon RJ, Clanton CR, Snider CC, Wellons DD et al (2009) Early evaluation of acute traumatic coagulopathy by thrombelastography. Transl Res 154(1):34–39

    Article  PubMed  Google Scholar 

  20. Floccard B, Rugeri L, Faure A, Saint Denis M, Boyle EM, Peguet O et al (2012) Early coagulopathy in trauma patients: an on-scene and hospital admission study. Injury 43(1):26–32

    Article  PubMed  Google Scholar 

  21. Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF (2007) Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg 245(5):812–818

    Article  PubMed  PubMed Central  Google Scholar 

  22. Johansson PI, Sorensen AM, Perner A, Welling KL, Wanscher M, Larsen CF et al (2011) Disseminated intravascular coagulation or acute coagulopathy of trauma shock early after trauma? An observational study. Crit Care 15(6):R272

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cohen MJ, Call M, Nelson M, Calfee CS, Esmon CT, Brohi K et al (2012) Critical role of activated protein C in early coagulopathy and later organ failure, infection and death in trauma patients. Ann Surg 255(2):379–385

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rizoli SB, Scarpelini S, Callum J, Nascimento B, Mann KG, Pinto R et al (2011) Clotting factor deficiency in early trauma-associated coagulopathy. J Trauma 71(5 Suppl 1):S427–S434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Zyl N, Milford EM, Diab S, Dunster K, McGiffin P, Rayner SG et al (2016) Activation of the protein C pathway and endothelial glycocalyx shedding is associated with coagulopathy in an ovine model of trauma and hemorrhage. J Trauma Acute Care Surg 81(4):674–684

    Article  PubMed  Google Scholar 

  26. Chesebro BB, Rahn P, Carles M, Esmon CT, Xu J, Brohi K et al (2009) Increase in activated protein C mediates acute traumatic coagulopathy in mice. Shock 32(6):659–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rahbar MH, Fox EE, del Junco DJ, Cotton BA, Podbielski JM, Matijevic N et al (2012) Coordination and management of multicenter clinical studies in trauma: experience from the PRospective observational multicenter major trauma transfusion (PROMMTT) study. Resuscitation 83(4):459–464

    Article  PubMed  Google Scholar 

  28. Noel P, Cashen S, Patel B (2013) Trauma-induced coagulopathy: from biology to therapy. Semin Hematol 50(3):259–269

    Article  PubMed  Google Scholar 

  29. Simmons JW, White CE, Ritchie JD, Hardin MO, Dubick MA, Blackbourne LH (2011) Mechanism of injury affects acute coagulopathy of trauma in combat casualties. J Trauma 71(1 Suppl):S74–S77

    Article  PubMed  Google Scholar 

  30. Levi M, Toh CH, Thachil J, Watson HG (2009) Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br J Haematol 145(1):24–33

    Article  CAS  PubMed  Google Scholar 

  31. Hess JR, Brohi K, Dutton RP, Hauser CJ, Holcomb JB, Kluger Y et al (2008) The coagulopathy of trauma: a review of mechanisms. J Trauma 65(4):748–754

    Article  CAS  PubMed  Google Scholar 

  32. Gando S, Wada H, Thachil J (2013) Scientific and Standardization Committee on DIC of the International Society on Thrombosis and Haemostasis (ISTH). Differentiating disseminated intravascular coagulation (DIC) with the fibrinolytic phenotype from coagulopathy of trauma and acute coagulopathy of trauma-shock (COT/ACOTS). J Thromb Haemost 11(5):826–835

    Article  CAS  PubMed  Google Scholar 

  33. Gando S, Otomo Y (2015) Local hemostasis, immunothrombosis, and systemic disseminated intravascular coagulation in trauma and traumatic shock. Crit Care 19:72-015-0735-x

  34. Schlimp CJ, Voelckel W, Inaba K, Maegele M, Ponschab M, Schochl H (2013) Estimation of plasma fibrinogen levels based on hemoglobin, base excess and Injury Severity Score upon emergency room admission. Crit Care 17(4):R137

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rourke C, Curry N, Khan S, Taylor R, Raza I, Davenport R et al (2012) Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost 10(7):1342–1351

    Article  CAS  PubMed  Google Scholar 

  36. Martini WZ, Chinkes DL, Pusateri AE, Holcomb JB, Yu YM, Zhang XJ et al (2005) Acute changes in fibrinogen metabolism and coagulation after hemorrhage in pigs. Am J Physiol Endocrinol Metab 289(5):E930–E934

    Article  CAS  PubMed  Google Scholar 

  37. Schlimp CJ, Schochl H (2014) The role of fibrinogen in trauma-induced coagulopathy. Hamostaseologie 34(1):29–39

    Article  CAS  PubMed  Google Scholar 

  38. Brohi K, Cohen MJ, Ganter MT, Schultz MJ, Levi M, Mackersie RC et al (2008) Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma 64(5):1211–1217 (discussion 1217)

    Article  PubMed  Google Scholar 

  39. Davenport RA, Guerreiro M, Frith D, Rourke C, Platton S, Cohen M, et al (2016) Activated Protein C Drives the Hyperfibrinolysis of Acute Traumatic Coagulopathy. Anesthesiology

  40. Hayakawa M, Sawamura A, Gando S, Kubota N, Uegaki S, Shimojima H et al (2011) Disseminated intravascular coagulation at an early phase of trauma is associated with consumption coagulopathy and excessive fibrinolysis both by plasmin and neutrophil elastase. Surgery 149(2):221–230

    Article  PubMed  Google Scholar 

  41. Chapman MP, Moore EE, Moore HB, Gonzalez E, Gamboni F, Chandler JG et al (2016) Overwhelming tPA release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients. J Trauma Acute Care Surg 80(1):16–23 (discussion 23-5)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cotton BA, Harvin JA, Kostousouv V, Minei KM, Radwan ZA, Schochl H et al (2012) Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration. J Trauma Acute Care Surg 73(2):365–370 (discussion 370)

    Article  CAS  PubMed  Google Scholar 

  43. Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC et al (2014) Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg 77(6):811–817 (discussion 817)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moore HB, Moore EE, Liras IN, Gonzalez E, Harvin JA, Holcomb JB et al (2016) Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. J Am Coll Surg 222(4):347–355

    Article  PubMed  PubMed Central  Google Scholar 

  45. Moore HB, Moore EE, Gonzalez E, Hansen KC, Dzieciatkowska M, Chapman MP et al (2015) Hemolysis exacerbates hyperfibrinolysis, whereas platelolysis shuts down fibrinolysis: evolving concepts of the spectrum of fibrinolysis in response to severe injury. Shock 43(1):39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kornblith LZ, Kutcher ME, Redick BJ, Calfee CS, Vilardi RF, Cohen MJ (2014) Fibrinogen and platelet contributions to clot formation: implications for trauma resuscitation and thromboprophylaxis. J Trauma Acute Care Surg 76(2):255–256 (discussion 262-3)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brown LM, Call MS, Margaret Knudson M, Cohen MJ, Trauma Outcomes Group, Holcomb JB, et al (2011) A normal platelet count may not be enough: the impact of admission platelet count on mortality and transfusion in severely injured trauma patients. J Trauma (2 Suppl 3):S337–42

  48. Wohlauer MV, Moore EE, Thomas S, Sauaia A, Evans E, Harr J et al (2012) Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg 214(5):739–746

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kutcher ME, Redick BJ, McCreery RC, Crane IM, Greenberg MD, Cachola LM et al (2012) Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg 73(1):13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Solomon C, Traintinger S, Ziegler B, Hanke A, Rahe-Meyer N, Voelckel W et al (2011) Platelet function following trauma. A multiple electrode aggregometry study. Thromb Haemost 106(2):322–330

    Article  CAS  PubMed  Google Scholar 

  51. Sillesen M, Johansson PI, Rasmussen LS, Jin G, Jepsen CH, Imam AM et al (2013) Platelet activation and dysfunction in a large-animal model of traumatic brain injury and hemorrhage. J Trauma Acute Care Surg 74(5):1252–1259

    Article  CAS  PubMed  Google Scholar 

  52. Jacoby RC, Owings JT, Holmes J, Battistella FD, Gosselin RC, Paglieroni TG (2001) Platelet activation and function after trauma. J Trauma 51(4):639–647

    Article  CAS  PubMed  Google Scholar 

  53. Bartels AN, Johnson C, Lewis J, Clevenger JW, Barnes SL, Hammer RD et al (2016) Platelet adenosine diphosphate inhibition in trauma patients by thromboelastography correlates with paradoxical increase in platelet dense granule content by flow cytometry. Surgery 160(4):954–959

    Article  PubMed  Google Scholar 

  54. Stalker TJ, Traxler EA, Wu J, Wannemacher KM, Cermignano SL, Voronov R et al (2013) Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 121(10):1875–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moore HB, Moore EE, Chapman MP, Gonzalez E, Slaughter AL, Morton AP et al (2015) Viscoelastic measurements of platelet function, not fibrinogen function, predicts sensitivity to tissue-type plasminogen activator in trauma patients. J Thromb Haemost 13(10):1878–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Johansson PI, Ostrowski SR (2010) Acute coagulopathy of trauma: balancing progressive catecholamine induced endothelial activation and damage by fluid phase anticoagulation. Med Hypotheses 75(6):564–567

    Article  CAS  PubMed  Google Scholar 

  57. Tuma M, Canestrini S, Alwahab Z, Marshall J (2016) Trauma and endothelial glycocalyx: the microcirculation helmet? Shock 46(4):352–357

    Article  CAS  PubMed  Google Scholar 

  58. Schott U, Solomon C, Fries D, Bentzer P (2016) The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review. Scand J Trauma Resusc Emerg Med 24:48-016-0239-y

  59. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR (2011) A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg 254(2):194–200

    Article  PubMed  Google Scholar 

  60. Ostrowski SR, Henriksen HH, Stensballe J, Gybel-Brask M, Cardenas JC, Baer LA, et al (2016) Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: A prospective observational study of 404 severely injured patients. J Trauma Acute Care Surg

  61. Rahbar E, Cardenas JC, Baimukanova G, Usadi B, Bruhn R, Pati S, et al (2015) Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients. J Transl Med 13:117-015-0481-5

  62. Ostrowski SR, Johansson PI (2012) Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg 73(1):60–66

    Article  CAS  PubMed  Google Scholar 

  63. Henrich D, Zimmer S, Seebach C, Frank J, Barker J, Marzi I (2011) Trauma-activated polymorphonucleated leukocytes damage endothelial progenitor cells: probable role of CD11b/CD18-CD54 interaction and release of reactive oxygen species. Shock 36(3):216–222

    Article  CAS  PubMed  Google Scholar 

  64. Xu L, Yu WK, Lin ZL, Tan SJ, Bai XW, Ding K et al (2015) Chemical sympathectomy attenuates inflammation, glycocalyx shedding and coagulation disorders in rats with acute traumatic coagulopathy. Blood Coagul Fibrinolysis 26(2):152–160

    Article  CAS  PubMed  Google Scholar 

  65. Johansson PI, Sorensen AM, Perner A, Welling KL, Wanscher M, Larsen CF et al (2012) High sCD40L levels early after trauma are associated with enhanced shock, sympathoadrenal activation, tissue and endothelial damage, coagulopathy and mortality. J Thromb Haemost 10(2):207–216

    Article  CAS  PubMed  Google Scholar 

  66. Ganter MT, Cohen MJ, Brohi K, Chesebro BB, Staudenmayer KL, Rahn P et al (2008) Angiopoietin-2, marker and mediator of endothelial activation with prognostic significance early after trauma? Ann Surg 247(2):320–326

    Article  PubMed  Google Scholar 

  67. Shenkman B, Budnik I, Einav Y, Hauschner H, Andrejchin M, Martinowitz U (2016) Model of trauma-induced coagulopathy including hemodilution, fibrinolysis, acidosis and hypothermia: Impact on blood coagulation and platelet function. J Trauma Acute Care Surg

  68. Weuster M, Bruck A, Lippross S, Menzdorf L, Fitschen-Oestern S, Behrendt P et al (2016) Epidemiology of accidental hypothermia in polytrauma patients: an analysis of 15,230 patients of the TraumaRegister DGU. J Trauma Acute Care Surg 81(5):905–912

    Article  PubMed  Google Scholar 

  69. Wolberg AS, Meng ZH, Monroe DM 3rd, Hoffman M (2004) A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma 56(6):1221–1228

    Article  CAS  PubMed  Google Scholar 

  70. Mitrophanov AY, Rosendaal FR, Reifman J (2013) Computational analysis of the effects of reduced temperature on thrombin generation: the contributions of hypothermia to coagulopathy. Anesth Analg 117(3):565–574

    Article  CAS  PubMed  Google Scholar 

  71. Engstrom M, Schott U, Romner B, Reinstrup P (2006) Acidosis impairs the coagulation: a thromboelastographic study. J Trauma 61(3):624–628

    Article  PubMed  Google Scholar 

  72. Martini WZ, Holcomb JB (2007) Acidosis and coagulopathy: the differential effects on fibrinogen synthesis and breakdown in pigs. Ann Surg 246(5):831–835

    Article  PubMed  Google Scholar 

  73. Martini WZ (2009) Fibrinogen metabolic responses to trauma. Scand J Trauma Resusc Emerg Med 17:2-7241-17-2

  74. Eugster M, Reinhart WH (2005) The influence of the haematocrit on primary haemostasis in vitro. Thromb Haemost 94(6):1213–1218

    CAS  PubMed  Google Scholar 

  75. Maegele M, Lefering R, Yucel N, Tjardes T, Rixen D, Paffrath T et al (2007) Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury 38(3):298–304

    Article  PubMed  Google Scholar 

  76. Williams P, Yang K, Kershaw G, Wong G, Dunkley S, Kam PC (2015) The effects of haemodilution with hydroxyethyl starch 130/0.4 solution on coagulation as assessed by thromboelastography and platelet receptor function studies in vitro. Anaesth Intensive Care 43(6):734–739

    CAS  PubMed  Google Scholar 

  77. Nardi G, Agostini V, Rondinelli B, Russo E, Bastianini B, Bini G et al (2015) Trauma-induced coagulopathy: impact of the early coagulation support protocol on blood product consumption, mortality and costs. Crit Care 12(19):83

    Article  Google Scholar 

  78. Giordano S, Spiezia L, Casacanditella G, Pizziol A, Simioni P (2016) Point-of-care management of fulminant hyperfibrinolysis in the Emergency Department after hanging trauma. © Anaesthesia Cases. ISSN 2396-8397

  79. Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, et al (2016) The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care 20(1):100

  80. Pati S, Potter DR, Baimukanova G, Farrel DH, Holcomb JB, Schreiber MA (2016) Modulating the endotheliopathy of trauma: factor concentrate versus fresh frozen plasma. J Trauma Acute Care Surg 80(4):576–584 (discussion 584-5)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Giordano.

Ethics declarations

Conflicts of interest

All the authors declare that they have no conflicts of interest.

Statement of human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was not required for this review article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giordano, S., Spiezia, L., Campello, E. et al. The current understanding of trauma-induced coagulopathy (TIC): a focused review on pathophysiology. Intern Emerg Med 12, 981–991 (2017). https://doi.org/10.1007/s11739-017-1674-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-017-1674-0

Keywords

Navigation