Skip to main content

Advertisement

Log in

Salt and water imbalance in chronic heart failure

  • SYMPOSIUM – METABOLIC THERAPY: NEW OPPORTUNITY FOR TREATMENT OF HEARTH FAILURE
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

In chronic heart failure (CHF), neurohumoral systems, which help to maintain circulatory homeostasis, are maladaptive and responsible for disease progression and congestion in the long term. The activation of sympathetic hormones and renin–angiotensin–aldosterone system (RAAS), in addition to non-osmotic vasopressin release, up-regulation of aquoporine 2 and renal sodium transporters, and renal resistance to natriuretic peptide lead to a salt- and water-avid state. A primary decrease in cardiac output and arterial vasodilatation brings about arterial underfilling, which activates neuro-humoral reflexes and systems. The heart disease is the primum movens, but the kidney is the end organ responsible for increased tubular reabsorption of sodium and water. The most important hemodynamic alteration in the kidneys is constriction of glomerular efferent arterioles, which increases intraglomerular pressure and hence glomerular filtration rate. The resulting changes in intrarenal oncotic and hydrostatic pressures promote tubular reabsorption. Over time, a gradually falling glomerular filtration rate, due to CHF progression, medications or chronic kidney injury due to comorbidities, becomes more critical in sodium/water imbalance. Moreover, long-term use of diuretics can lead to a diuretic-resistant state, which necessitates the use of higher doses further activating RAAS, often at the expense of worsening renal function. However, every patient is a case in itself and the general pathophysiology of hydro-saline balance may be different in each subject. A mechanism can prevail over others and the kidney may have different responses to the same diuretic. So, it is necessary to customize each individual’s long-term therapy, tailoring medical treatment according to clinical profiles, comorbidities and renal function, introducing active control of body weight by the patient himself, fluid restriction, a less restricted sodium intake, flexibility of diuretic doses, early and personalized ambulatory follow-up, and congestion monitoring by bioelectrical impedance vector analysis, BNP, inferior vena cava ultrasonography or echocardiographic e/e1 ratio or pulmonary capillary wedge pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Packer M (1995) Evolution of the neurohormonal hypothesis to explain the progression of chronic heart failure. Eur Heart J 16(Suppl F):4–6

    Google Scholar 

  2. Francis GS, McDonald KM, Cohn JN (1993) Neurohumoral activation in preclinical heart failure remodeling and the potential for intervention. Circulation 87(5 suppl):IV90–IV96

    PubMed  CAS  Google Scholar 

  3. Parrinello G, Torres D, Paterna S, Di Pasquale P, Licata G (2008) The pathophysiology of acute heart failure: The key role of fluid accumulation. Am Heart J 156(2):e19

    Article  PubMed  Google Scholar 

  4. Picano E, Gargani L, Gheorghiade M (2010) Why, when, and how to assess pulmonary congestion in heart failure: pathophysiological, clinical, and methodological implications. Heart Fail Rev 15(1):63–72

    Google Scholar 

  5. Schrier RW (1988) Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (1). N Engl J Med 319(16):1065–1072

    Article  PubMed  CAS  Google Scholar 

  6. Schrier RW (1988) Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (2). N Engl J Med 319(17):1127–1134

    Article  PubMed  CAS  Google Scholar 

  7. Selektor Y, Weber K (2008) The salt-avid state of congestive heart failure revisited. Am J Med Sci 335(3):209–218

    Google Scholar 

  8. Di Pasquale P, Sarullo FM, Paterna S (2007) Novel strategies: challenge loop diuretics and sodium management in heart failure–part I. Congest Heart Fail 13(2):93–98

    Google Scholar 

  9. Di Pasquale P, Sarullo FM, Paterna S (2007) Novel strategies: challenge loop diuretics and sodium management in heart failure–part II. Congest Heart Fail 13(3):170–176

    Article  PubMed  CAS  Google Scholar 

  10. Schrier RW, Berl T (1975) Nonosmolar factors affecting renal water excretion (first of two parts). N Engl J Med 292(2):81–88

    Article  PubMed  CAS  Google Scholar 

  11. Schrier RW, Abraham WT (1999) Hormones and hemodynamics in heart failure. N Engl J Med 341(8):577–585

    Article  PubMed  CAS  Google Scholar 

  12. Schrier RW, Berl T (1975) Nonosmolar factors affecting renal water excretion (second of two parts). N Engl J Med 292(3):141–145

    Article  PubMed  CAS  Google Scholar 

  13. Liszkowski M, Nohria A (2010) Rubbing salt into wounds: hypertonic saline to assist with volume removal in heart failure. Curr Heart Fail Rep 7(3):134–139

    Article  PubMed  Google Scholar 

  14. Schrier RW, Cadnapaphornchai MA, Umenishi F (2001) Water-losing and water-retaining states: role of water channels and vasopressin receptor antagonists. Heart Dis 3((3):210–214

    Article  PubMed  CAS  Google Scholar 

  15. Alderman MH (2010) Reducing dietary sodium: the case for caution. JAMA 303(5):448–449

    Article  PubMed  CAS  Google Scholar 

  16. Parrinello G, Di Pasquale P, Licata G, Torres D, Giammanco M, Fasullo S, Mezzero M, Paterna S (2009) Long-term effects of dietary sodium intake on cytokines and neurohormonal activation in patients with recently compensated congestive heart failure. J Card Fail 15(10):864–873

    Article  PubMed  CAS  Google Scholar 

  17. Paterna S, Parrinello G, Cannizzaro S, Fasullo S, Torres D, Sarullo FM, Di Pasquale P (2009) Medium term effects of different dosage of diuretic, sodium and fluid administration on neurohormonal and clinical outcome in patients with recently compensated heart failure. Am J Cardiol 103(1):93–102

    Article  PubMed  CAS  Google Scholar 

  18. Lennie TA, Song EK, Wu JR, Chung ML, Dunbar SB, Pressler SJ, Moser DK (2011) Three gram sodium intake is associated with longer event-free survival only in patients with advanced heart failure. J Card Fail 17(4):325–330

    Article  PubMed  Google Scholar 

  19. Parrinello G. Torres D, Licata G.(2008) L’approccio al paziente con Scompenso Cardiaco. Intern Emerg Med. 3:S226-S235. Atti del 109° Congresso Nazionale SIMI 2008

  20. Licata G, Di Pasquale P, Parrinello G et al (2003) Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: long-term effects. Am Heart J 145:459–466

    Article  PubMed  CAS  Google Scholar 

  21. Lucas C, Johnson W, Hamilton MA et al (2000) Freedom from congestion predicts good survival despite previous class IV symptoms of heart failure. Am Heart J 140:840–847

    Article  PubMed  CAS  Google Scholar 

  22. McDonald K (2010) Monitoring fluid status at the outpatient level: the need for more precision. Congest Heart Fail 16(Suppl 1):S52–S55

    Article  PubMed  Google Scholar 

  23. Parrinello G, Torres D, Paterna S, Di Pasquale P, Licata G (2009) The challenge of the volume status assessment in heart failure. Am Heart J 157(4):e19–e20

    Article  PubMed  Google Scholar 

  24. Valle R, Aspromonte N (2010) Use of brain natriuretic peptide and bioimpedance to guide therapy in heart failure patients. Contrib Nephrol 164:209–216

    Article  PubMed  Google Scholar 

  25. Parrinello G, Torres D, Paterna S, Licata G (2009) Is there any novelty on the horizon of heart failure management in internal medicine? The evaluation of body fluid accumulation. Intern Emerg Med 4(3):269–270

    Article  PubMed  Google Scholar 

  26. Parrinello G, Paterna S, Di Pasquale P, Torres D, Fatta A, Mezzero M, Scaglione R, Licata G (2008) The usefulness of bioelectrical impedance analysis in differentiating dyspnea due to decompensated heart failure. J Card Fail 14:676–686

    Article  PubMed  Google Scholar 

  27. Parrinello G, Torres D, Paterna S, Di Pasquale P, Trapanese C, Cardillo M, Bellanca M, Fasullo S, Licata G (2011) Early and personalized ambulatory follow-up to tailor furosemide and fluid intake according to congestion in post-discharge heart failure. Intern Emerg Med. DOI: 10.1007/s11739-011-0602-y

  28. Parrinello G, Paterna S, Di Pasquale P, Torres D, Mezzero M, Cardillo M, Fasullo S, La Rocca G, Licata G (2011) Changes in estimating echocardiography pulmonary capillary wedge pressure after hypersaline plus furosemide versus furosemide alone in decompensated heart failure. J Card Fail 17(4):331–339

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parrinello, G., Torres, D. & Paterna, S. Salt and water imbalance in chronic heart failure. Intern Emerg Med 6 (Suppl 1), 29 (2011). https://doi.org/10.1007/s11739-011-0674-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11739-011-0674-8

Keywords

Navigation