Skip to main content
Log in

Nitric oxide application for postharvest quality retention of guava fruits

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Guava is an important tropical and subtropical climacteric fruit rich in vitamin C. At ambient conditions, the fruit cannot be stored for a long period due to fast ripening, abrupt softening and fungal growth. The aim of the present study was to investigate the influence of postharvest sodium nitroprusside (SNP) treatment, a nitric oxide donor, on senescence and physicochemical quality of guava fruit. Mature-green fruits were given immersion treatment of sodium nitroprusside (0.5, 1.0, and 1.5 mM) for 5 min while, fruits under control were dipped in distilled water for the same duration. After the treatment, fruits were stored at ambient condition (20 ± 3 °C). Among the treatments, the best result with minimum weight loss (16.31%) and decay loss (22.22%) after 12 days of storage was noted in 1.0 mM SNP-treated fruits. Malondialdehyde content of fruits under this treatment also showed minimum increase of 5.3-fold indicating delayed senescence, as compared to control and other SNP-treated fruits. Fruits under this treatment exhibited delayed ripening, resulting minimum loss (53.23%) of chlorophyll, and slower increase in carotenoid pigments. Prestorage treatment of guava with SNP (1.0 mM) presented minimum loss of total soluble solids and acidity as compared to control fruits. The loss in ascorbic acid (21.30%), phenols (22.25%), flavonoids (26.14%), antioxidant capacity (25.61%), and radical scavenging activity (34.21%) was minimum in guava fruits treated with 1.0 mM SNP. The study indicated that storage life of guava at ambient condition can be prolonged by postharvest immersion treatment of 1.0 mM SNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylic acid

AOX:

Antioxidant

CE:

Catechin equivalent

CUPRAC:

Cupric ion reducing antioxidant capacity

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

FW:

Fresh weight

GAE:

Gallic acid equivalent

MDA:

Malondialdehyde

NO:

Nitric oxide

PPO:

Polyphenol oxidase

PR:

Pathogenesis-related

RSA:

Radical scavenging activity

SA:

Salicylic acid

SAM:

S-Adenosyl-l-methionine

SE:

Standard error

SNP:

Sodium nitroprusside

TE:

Trolox equivalent

TSS:

Total soluble solids

WL:

Weight loss

References

  • AOAC (2000) Official methods of analysis, 17th edn. Association of Official Analytical Chemists, Gaithersburg

    Google Scholar 

  • Apak R, Guclu K, Ozyurek M, Celik SE (2008) Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta 60(4):413–419

    Google Scholar 

  • Arnon DL (1949) Copper enzyme in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24(1):1–5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arshiya S (2013) The antioxidant effect of certain fruits: a review. J Pharma Sci Res 5(12):265

    Google Scholar 

  • Asrey R, Patel VB, Barman K, Pal RK (2013) Pruning affects fruit yield and postharvest quality in mango (Mangifera indica L.) cv. Amrapali. Fruits 68(5):367–380

    CAS  Google Scholar 

  • Barman K, Asrey R, Pal RK, Jha SK, Bhatia K (2014a) Post-harvest nitric oxide treatment reduces chilling injury and enhances the shelf-life of mango (Mangifera indica L.) fruit during low-temperature storage. J Hortic Sci Biotech 89(3):253–260

    CAS  Google Scholar 

  • Barman K, Siddiqui MW, Patel VB, Prasad M (2014b) Nitric oxide reduces pericarp browning and preserves bioactive antioxidants in litchi. Sci Hortic 171:71–77

    CAS  Google Scholar 

  • Bassetto E, Jacomino AP, Pinheiro AL, Kluge RA (2005) Delay of ripening of ‘Pedro Sato’ guava with 1-methylcyclopropene. Postharvest Biol Technol 35(3):303–308

    CAS  Google Scholar 

  • Bhuyan MHMB, Hasanuzzaman M, Parvin K, Mohsin SM, Mahmud JA, Nahar K, Fujita M (2020) Nitric oxide and hydrogen sulfide: two intimate collaborators regulating plant defense against abiotic stress. Plant Growth Regul 90:409–424

    CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30

    CAS  Google Scholar 

  • Buet A, Galatro A, Ramos-Artuso F, Simontacchi M (2019) Nitric oxide and plant mineral nutrition: current knowledge. J Exp Bot 70(17):4461–4476

    CAS  PubMed  Google Scholar 

  • Davarynejad G, Zarei M, Ardakani E, Nasrabadi ME (2013) Influence of putrescine application on storability, postharvest quality and antioxidant activity of two Iranian apricots (Prunus armeniaca L.) cultivars. Not Sci Biol 5(2):212–219

    CAS  Google Scholar 

  • Dorais M, Ehret DL, Papadopoulos AP (2008) Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem Rev 7(2):231. https://doi.org/10.1007/s11101-007-9085-x

    Article  CAS  Google Scholar 

  • Duan X, Su X, You Y, Qu H, Li Y, Jiang Y (2007) Effect of nitric oxide on pericarp browning of harvested longan fruit in relation to phenolic metabolism. Food Chem 104(2):571–576

    CAS  Google Scholar 

  • Etemadipoor R, Dastjerdi AM, Ramezanian A, Ehteshami S (2020) Ameliorative effect of gum arabic, oleic acid and/or cinnamon essential oil on chilling injury and quality loss of guava fruit. Sci Hortic 266:109255. https://doi.org/10.1016/j.scienta.2020.109255

    Article  CAS  Google Scholar 

  • Expósito JR, Román SMS, Barreno E, Reig-Armiñana J, García-Breijo FJ, Catalá M (2019) Inhibition of NO biosynthetic activities during rehydration of Ramalina farinacea Lichen Thalli provokes increases in lipid peroxidation. Plants 8:189. https://doi.org/10.3390/plants8070189

    Article  CAS  PubMed Central  Google Scholar 

  • Forato LA, de Britto D, de Rizzo JS, Gastaldi TA, Assis OB (2015) Effect of cashew gum-carboxymethyl cellulose edible coatings in extending the shelf-life of fresh and cut guavas. Food Packag Shelf Life 5:68–74

    Google Scholar 

  • Gao H, Zeng Q, Ren Z, Li P, Xu X (2018) Effect of exogenous γ-aminobutyric acid treatment on the enzymatic browning of fresh-cut potato during storage. Int J Food Sci Technol 55(12):5035–5044

    CAS  Google Scholar 

  • Gheysarbigi S, Mirdehghan SH, Ghasemnezhad M, Nazoori F (2020) The inhibitory effect of nitric oxide on enzymatic browning reactions of in-package fresh pistachios (Pistacia vera L.). Postharvest Biol Technol 159:110998. https://doi.org/10.1016/j.postharvbio.2019.110998

    Article  Google Scholar 

  • Gill KBS, Dhaliwal HS, Mahajan BVC (2014) Effect of post-harvest treatment of ascorbic acid on shelf-life and quality of guava (Psidium guajava L.) cv. Allahabad Safeda. Int J Agric Sci Vet Med 2:130–141

    Google Scholar 

  • Harborne JB (1973) Phytochemical methods: a guide to modern technique of plant analysis. Chapman & Hall, London, p 279

    Google Scholar 

  • Hiwale SS, Singh SP (2003) Prolonging the shelf life of guava (Psidium guajava L.). Indian J Hortic 60(1):1–9

    Google Scholar 

  • Hu M, Yang D, Huber DJ, Jiang Y, Li M, Gao Z, Zhang Z (2014) Reduction of postharvest anthracnose and enhancement of disease resistance in ripening mango fruit by nitric oxide treatment. Postharvest Biol Technol 97:115–122

    CAS  Google Scholar 

  • Hu M, Zhu Y, Liu G, Gao Z, Li M, Su Z, Zhang Z (2019) Inhibition on anthracnose and induction of defense response by nitric oxide in pitaya fruit. Sci Hortic 245:224–230

    CAS  Google Scholar 

  • Hughes DA (2001) Dietary carotenoids and human immune function. Nutrition 17(10):823–827

    CAS  PubMed  Google Scholar 

  • Hussain PR, Rather SA, Suradkar P, Parveen S, Mir MA, Shafi F (2016) Potential of carboxymethyl cellulose coating and low dose gamma irradiation to maintain storage quality, inhibit fungal growth and extend shelf-life of cherry fruit. J Food Sci Technol 53(7):2966–2986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imahori Y, Takemura M, Bai J (2008) Chilling-induced oxidative stress and antioxidant responses in mume (Prunus mume) fruit during low temperature storage. Postharvest Biol Technol 49(1):54–60

    CAS  Google Scholar 

  • Jha SN, Vishwakarma RK, Ahmad T, Rai A, Dixit AK (2015) Report on assessment of quantitative harvest and post-harvest losses of major crops and commodities in India. All India Coordinated Research Project on Post-Harvest Technology, ICAR-CIPHET, Ludhiana

    Google Scholar 

  • Jhalegar MJ, Sharma RR, Pal RK, Rana V (2012) Effect of postharvest treatments with polyamines on physiological and biochemical attributes of kiwifruit (Actinidia deliciosa) cv. Allison. Fruits 67(1):13–22

    CAS  Google Scholar 

  • Jones E, Hughes RE (1983) Foliar ascorbic acid in some angiosperms. Phytochemistry 22(11):2493–2499

    CAS  Google Scholar 

  • Kabbashi EB, Abdel Rahman GH, Abdlerahman NA (2018) Guava (Psidium guajava L.) fruit coating with gum-arabic for quality and fruit fly control. J Exp Sci 9:1–4

    CAS  Google Scholar 

  • Kanwal N, Randhawa MA, Iqbal Z (2016) A review of production, losses and processing technologies of guava. Asian J Agric Food Sci 4(2):96–101

    Google Scholar 

  • Kaur K, Kaur K (2018) Nitric oxide improves thermotolerance in spring maize by inducing varied genotypic defense mechanisms. Acta Physiol Plant 40:55. https://doi.org/10.1007/s11738-018-2632-9

    Article  CAS  Google Scholar 

  • Khodaei M, Nahandi FZ, Motallebi-Azar A, Dadpour M (2015) Effect of salicylic acid and sodium nitroprusside on the pomegranate aril browning disorder. Biol Forum 7(2):1014

    CAS  Google Scholar 

  • Koca N, Karadeniz F, Burdurlu HS (2007) Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chem 100(2):609–615

    CAS  Google Scholar 

  • Lata D, Aftab MA, Homa F, Ahmad MS, Siddiqui MW (2018) Effect of eco-safe compounds on postharvest quality preservation of papaya (Carica papaya L.). Acta Physiol Plant 40:8. https://doi.org/10.1007/s11738-017-2584-5

    Article  CAS  Google Scholar 

  • Li XP, Wu B, Guo Q, Wang JD, Zhang P, Chen WX (2014) Effects of nitric oxide on postharvest quality and soluble sugar content in papaya fruit during ripening. J Food Process Preserv 38(1):591–599

    Google Scholar 

  • Liu F, Guo F-Q (2013) Nitric oxide deficiency accelerates chlorophyll breakdown and stability loss of thylakoid membranes during dark-induced leaf senescence in Arabidopsis. PLoS One 8(2):e56345. https://doi.org/10.1371/journal.pone.0056345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo’ay AA, El Khateeb AY (2011) Delaying guava ripening by exogenous salicylic acid. Int J Plant Prod 2:715–724

    Google Scholar 

  • Lokesh V, Manjunatha G, Hegde NS, Bulle M, Puthusseri B, Gupta KJ, Neelwarne B (2019) Polyamine induction in postharvest banana fruits in response to NO donor SNP occurs via l-arginine mediated pathway and not via competitive diversion of S-adenosyl-l-methionine. Antioxidants 8:358. https://doi.org/10.3390/antiox8090358

    Article  CAS  PubMed Central  Google Scholar 

  • Lufu R, Ambaw A, Opara UL (2020) Water loss of fresh fruit: influencing pre-harvest, harvest and postharvest factors. Sci Hortic 272:109519. https://doi.org/10.1016/j.scienta.2020.109519

    Article  Google Scholar 

  • Machado FL, Cajazeira JP, Costa J (2015) Color change and quality response of ‘Lane Late’ orange submitted to degreening process. Eng Agríc 35(1):144–153

    Google Scholar 

  • Mangaraj S, Goswami TK, Giri SK, Joshy CG (2014) Design and development of modified atmosphere packaging system for guava (cv. Baruipur). J Food Sci Technol 51(11):2925–2946

    CAS  PubMed  Google Scholar 

  • Manjunatha G, Lokesh V, Neelwarne B (2010) Nitric oxide in fruit ripening: trends and opportunities. Biotechnol Adv 28(4):489–499

    CAS  PubMed  Google Scholar 

  • Maringgal B, Hashim N, Tawakkal ISMA, Mohamed MTM (2020) Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends Food Sci Technol 96:253–267

    CAS  Google Scholar 

  • Miean KH, Mohamed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 49(6):3106–3112

    CAS  PubMed  Google Scholar 

  • Mukherjee S (2019) Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants. Nitric Oxide 82:25–34

    CAS  PubMed  Google Scholar 

  • Murmu SB, Mishra HN (2018) The effect of edible coating based on Arabic gum, sodium caseinate and essential oil of cinnamon and lemon grass on guava. Food Chem 245:820–828

    CAS  PubMed  Google Scholar 

  • Musa KH, Abdullah A, Jusoh K, Subramaniam V (2011) Antioxidant activity of pink-flesh guava (Psidium guajava L.): effect of extraction techniques and solvents. Food Anal Methods 4(1):100–107

    Google Scholar 

  • Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun B-G, Yun B-W (2019) Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot 161:120–133

    CAS  Google Scholar 

  • Palma JM, Freschi L, Rodríguez-Ruiz M, González-Gordo S, Corpas FJ (2019) Nitric oxide in the physiology and quality of fleshy fruits. J Exp Bot 70(17):4405–4417

    CAS  PubMed  Google Scholar 

  • Pandey S, Ranade SA, Nagar PK, Kumar N (2000) Role of polyamines and ethylene as modulators of plant senescence. J Biosci 25:291–299

    CAS  PubMed  Google Scholar 

  • Randhawa MA, Imran P, Shabbir A, Ammar A, Tauqeer A (2015) Effect of cellulose based coating on different verities of guava in combination with MgSO4 under controlled storage conditions. Pak J Food Sci 25(3):117–124

    CAS  Google Scholar 

  • Santa-Cruz DM, Pacienza NA, Zilli CG, Tomaro ML, Balestrasse KB, Yannarelli GG (2014) Nitric oxide induces specific isoforms of antioxidant enzymes in soybean leaves subjected to enhanced ultraviolet-B radiation. J Photochem Photobiol 141:202–209

    CAS  Google Scholar 

  • Saurabh V, Barman K, Singh AK (2019) Synergistic effect of salicylic acid and chitosan on postharvest life and quality attributes of jamun (Syzygium cumini Skeels) fruit. Acta Physiol Plant 41:89. https://doi.org/10.1007/s11738-019-2884-z

    Article  CAS  Google Scholar 

  • Sharma A, Soares C, Sousa B, Martins M, Kumar V, Shahzad B, Sidhu GPS, Bali AS, Asgher M, Bhardwaj R, Thukral AK, Fidalgo F, Zheng B (2020) Nitric oxide-mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects. Physiol Plant 168:318–344

    CAS  PubMed  Google Scholar 

  • Silva WB, Silva GMC, Santana DB, Salvador AR, Medeiros DB, Belghith I, da Silva NM, Cordeiro MHM, Misobutsi GP (2018) Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chem 242:232–238

    CAS  PubMed  Google Scholar 

  • Simontacchi M, Garcia-Mata C, Bartoli CG, Santa-Maria GE, Lamattina L (2013) Nitric oxide as a key component in hormone-regulated processes. Plant Cell Rep 32:853–866

    CAS  PubMed  Google Scholar 

  • Simontacchi M, Galatro A, Ramos-Artuso F, Santa-María GE (2015) Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Front Plant Sci 6:977. https://doi.org/10.3389/fpls.2015.00977

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Singh AK, Joshi HK (2005) Prolonging storability of Indian gooseberry (Emblica officinalis) under semi-arid ecosystem of Gujarat. Indian J Agric Sci 75(10):647–650

    Google Scholar 

  • Singh J, Prasad N, Singh SK (2018) Postharvest application of boric acid and NAA in guava to improve shelf-life and maintain quality under cold storage. Adv Biores 9(1):187–192

    CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178

    CAS  Google Scholar 

  • Soares NDFF, Silva DFP, Camilloto GP, Oliveira CP, Pinheiro NM, Medeiros EAA (2011) Antimicrobial edible coating in post-harvest conservation of guava. Rev Bras Frutic 33(SPE1):281–289

    Google Scholar 

  • Verma N, Tiwari S, Singh VP, Prasad SM (2020) Nitric oxide in plants: an ancient molecule with new tasks. Plant Growth Regul 90:1–13

    CAS  Google Scholar 

  • Wang Y, Luo Z, Du R (2015) Nitric oxide delays chlorophyll degradation and enhances antioxidant activity in banana fruits after cold storage. Acta Physiol Plant 37(4):74. https://doi.org/10.1007/s11738-015-1821-z

    Article  CAS  Google Scholar 

  • Wills RBH, Bambridge PA, Scott KJ (1980) Use of flesh firmness and other objective tests to determine consumer acceptability of Delicious apples. Aust J Exp Agric 20(103):252–256

    Google Scholar 

  • Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156

    CAS  PubMed  Google Scholar 

  • Zheng X, Tian S (2006) Effect of oxalic acid on control of postharvest browning of litchi fruit. Food Chem 96(4):519–523

    CAS  Google Scholar 

  • Zheng X, Tian S, Meng X, Li B (2007) Physiological and biochemical responses in peach fruit to oxalic acid treatment during storage at room temperature. Food Chem 104(1):156–162

    CAS  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64(4):555–559

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Banaras Hindu University, Varanasi for financial support and laboratory facility for conducting the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyan Barman.

Additional information

Communicated by P. K. Nagar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S.K., Barman, K. & Singh, A.K. Nitric oxide application for postharvest quality retention of guava fruits. Acta Physiol Plant 42, 156 (2020). https://doi.org/10.1007/s11738-020-03143-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03143-8

Keywords

Navigation