Skip to main content
Log in

Green algal molecular responses to temperature stress

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Global warming is a critical issue and has great impact on all living organisms, including algae. Generally, algae play significant roles in aquatic ecosystems and employ diverse strategies to survive under abiotic stress. For example, heat stress affects membrane fluidity, and algae, in response, can modify their membrane fatty acid composition to maintain homoeostasis. Moreover, they protect their proteins and enzymes using molecular chaperones or degrade denatured proteins in processes involving ubiquitin. In addition, algae regulate their carbohydrate concentrations and structures to utilise the energy of endogenous carbon sources efficiently and protect other molecules via accumulation of compatible solutes. Algae regulate the photosynthetic machinery to acclimatise to stress conditions. In fact, algae have a range of acclimation and repair strategies; and in the case where these strategies fail, programmed cell death (PCD) will be activated. Among algae, green algae have been massively studied due to their broad-range applications such as pharmaceutical, biofuel production and wastewater management, and being a suitable model to study plant and photosynthesis. Enhanced knowledge about the genes and proteins involved in the acclimation of green algae would enlighten our understanding of their acclimation pathways, and enable the genetic improvement of stress-tolerant strains. Thus, the mechanisms and pathways associated with green algal acclimation and repair strategies with an emphasis on temperature-related stress are highlighted in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad I, Hellebust JA (1988) The relationship between inorganic nitrogen metabolism and proline accumulation in osmoregulatory responses of two euryhaline microalgae. Plant Physiol 88(2):348–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Jamsheed S, Hameed A, Rasool S, Sharma I, Azooz MM, Hasanuzzaman M (2014) Oxidative damage and antioxidants in plants. In: Ahmad P (ed) Oxidative damage to plants. Elsevier, New York, pp 345–367

    Google Scholar 

  • Ahmad I, Sharma AK, Daniell H, Kumar S (2015) Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnol J 13(4):540–550

    CAS  PubMed  Google Scholar 

  • Aksmann A, Pokora W, Bascik-Remisiewicz A, Dettlaff-Pokora A, Wielgomas B, Dziadziuszko M, Tukaj Z (2014) Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene. Ecotoxicol Environ Saf 110:31–40

    CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of Photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32

    CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125(4):1842–1853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    CAS  PubMed  Google Scholar 

  • Ambati RR, Phang SM, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-a review. Mar Drugs 12:128–152

    PubMed  PubMed Central  Google Scholar 

  • Amini S, Ghobadi C, Yamchi A (2015) Proline accumulation and osmotic stress: an overview of P5CS gene in plants. J Plant Mol Breed 3(2):44–55

    Google Scholar 

  • An M, Mou S, Zhang X, Zheng Z, Ye N, Wang D, Zhang W, Miao J (2013a) Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress. Bioresour Technol 149:77–83

    CAS  PubMed  Google Scholar 

  • An M, Mou S, Zhang X, Ye N, Zheng Z, Cao S, Xu D, Fan X, Wang Y, Miao J (2013b) Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp ICE-L. Bioresour Technol 134:151–157

    CAS  PubMed  Google Scholar 

  • Andreou A, Feussner I (2009) Lipoxygenases-structure and reaction mechanism. Phytochemistry 70(13–14):1504–1510

    CAS  PubMed  Google Scholar 

  • Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48(3–4):148–170

    CAS  PubMed  Google Scholar 

  • Andronis EA, Roubelakis-Angelakis KA (2010) Short-term salinity stress in tobacco plants leads to the onset of animal-like PCD hallmarks in planta in contrast to long-term stress. Planta 231(2):437

    CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Arbona V, Manzi M, de Ollas C, Gomez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Audergon PN, Catania S, Kagansky A, Tong P, Shukla M, Pidoux AL, Allshire RC (2015) Epigenetics. Restricted epigenetic inheritance of H3K9 methylation. Science 348(6230):132–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avonce N, Wuyts J, Verschooten K, Vandesteene L, Van Dijck P (2010) The Cytophaga hutchinsonii ChTPSP: first characterized bifunctional TPS-TPP protein as putative ancestor of all eukaryotic trehalose biosynthesis proteins. Mol Biol Evol 27:359–369

    CAS  PubMed  Google Scholar 

  • Azachi M, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol 129:1320–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233

    CAS  PubMed  Google Scholar 

  • Barlow JH, Lisby M, Rothstein R (2008) Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol Cell 30:73–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartley ML, Boeing WJ, Corcoran AA, Holguin FO, Schaub T (2013) Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass Bioenerg 54:83–88

    CAS  Google Scholar 

  • Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43(1):26–40

    Google Scholar 

  • Bidle KD, Falkowski PG (2004) Cell death in planktonic, photosynthetic microorganisms. Nat Rev Microbiol 2:643–655

    CAS  PubMed  Google Scholar 

  • Bidle KD, Haramaty L, Barcelos ERJ, Falkowski P (2007) Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi. Proc Natl Acad Sci USA 104:6049–6054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biswal B, Joshi PN, Raval MK, Biswal UC (2011) Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. Curr Sci India 101(1):47–56

    CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7(7):1099–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bölling C, Fiehn O (2005) Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol 139(4):1995–2005

    PubMed  PubMed Central  Google Scholar 

  • Bopp L, Aumont O, Cadule P, Alvain S, Gehlen M (2005) Response of diatoms distribution to global warming and potential implications: a global model study. Geophys Res Lett 32:L19606

    Google Scholar 

  • Boreham DR, Mitchel RE (1993) DNA repair in Chlamydomonas reinhardtii induced by heat shock and gamma radiation. Radiat Res 135(3):365–371

    CAS  PubMed  Google Scholar 

  • Borowitzka LJ, Brown AD (1974) The salt relations of marine and halophilic species of the unicellular green alga. Dunaliella Arch Mikrobiol 96(1):37–52

    CAS  PubMed  Google Scholar 

  • Bouarab K, Adas F, Gaquerel E, Kloareg B, Salaun JP, Potin P (2004) The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiol 135(3):1838–1848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A et al (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bray CM, West CE (2005) DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168(3):511–528

    CAS  PubMed  Google Scholar 

  • Bremauntz MP, Torres-Bustillos LG, Cañizares-Villanueva R-O, Duran-Paramo E, Fernández-Linares L (2011) Trehalose and sucrose osmolytes accumulated by algae as potential raw material for bioethanol. Nat Resour 2:173–179

    CAS  Google Scholar 

  • Brett M, Müller-Navarra D (1997) The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biol 38(3):483–499

    CAS  Google Scholar 

  • Britt AB (2004) Repair of DNA damage induced by solar UV. Photosynth Res 81:105–112

    CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366

    CAS  PubMed  Google Scholar 

  • Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev 9(8):619–631

    CAS  Google Scholar 

  • Calow P (1991) Physiological costs of combating chemical toxicants: ecological implications. Comp Biochem Physiol C 100(1–2):3–6

    CAS  PubMed  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35(4):1011–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chankova S, Mitrovska Z, Miteva D, Oleskina YP, Yurina NP (2013) Heat shock protein HSP70B as a marker for genotype resistance to environmental stress in Chlorella species from contrasting habitats. Gene 516:184–189

    CAS  PubMed  Google Scholar 

  • Chen JE, Smith AG (2012) A look at diacylglycerol acyltransferases (DGATs) in algae. J Biotechnol 162:28–39

    CAS  PubMed  Google Scholar 

  • Chen L, Mao F, Kirumba GC, Jiang C, Manefield M, He Y (2015) Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress. Ecotoxicol Environ Saf 122:126–135

    CAS  PubMed  Google Scholar 

  • Cheng L, Qiao DR, Lu XY, Xiong Y, Bai LH, Xu H, Yang Y, Cao Y (2007) Identification and expression of the gene product encoding a CPD photolyase from Dunaliella salina. J Photochem Photobiol B 87(2):137–143

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12(2):133–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chong GL, Chu WL, Othman RY, Phang SM (2011) Differential gene expression of an Antarctic Chlorella in response to temperature stress. Polar Biol 34(5):637–645

    Google Scholar 

  • Clare DA, Rabinowitch HD, Fridovich I (1984) Superoxide dismutase and chilling injury in Chlorella ellipsoidea. Arch Biochem Biophys 231(1):158–163

    CAS  PubMed  Google Scholar 

  • Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, Labadie K, Caillieux E, Hospital F et al (2014) Mapping the epigenetic basis of complex traits. Science 343:1145–1148

    CAS  PubMed  Google Scholar 

  • Cosse A, Leblanc C, Potin P (2007) Dynamic defense of marine macroalgae against pathogens: from early activated to gene-regulated responses. Adv Bot Res 46:221–266

    Google Scholar 

  • Costa RM, Chigancas V, Galhardo Rda S, Carvalho H, Menck CF (2003) The eukaryotic nucleotide excision repair pathway. Biochimie 85(11):1083–1099

    CAS  PubMed  Google Scholar 

  • Crowe JH (2007) Trehalose as a “chemical chaperone”. Molecular aspects of the stress response: Chaperones, membranes and networks. Springer, Berlin, pp 143–158

  • Czerpak R, Piotrowska A, Szulecka K (2006) Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris. Acta Physiol Plant 28:195–203

    CAS  Google Scholar 

  • Daniel RM, Dines M, Petach HH (1996) The denaturation and degradation of stable enzymes at high temperatures. Biochem J 317(1):1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darehshouri A, Affenzeller M, Lütz-Meindl U (2008) Cell death upon H2O2 induction in the unicellular green alga Micrasterias. Plant Biol 10(6):732–745

    CAS  PubMed  Google Scholar 

  • Davidson JF, Schiestl RH (2001) Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol cell biol 21(24):8483–8489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. BBA-Bioenerg 1020(1):1–24

    CAS  Google Scholar 

  • Deng Y, Wang X, Guo H, Duan D (2014a) A trehalose-6-phosphate synthase gene from Saccharina japonica (Laminariales, Phaeophyceae). Mol Biol Rep 41(1):529–536

    CAS  PubMed  Google Scholar 

  • Deng Y, Zhan Z, Tang X, Ding L, Duan D (2014b) Molecular cloning and expression analysis of RbcL cDNA from the bloom-forming green alga Chaetomorpha valida (Cladophorales, Chlorophyta). J Appl Phycol 26(4):1853–1861

    CAS  Google Scholar 

  • Dietz KJ, Turkan I, Krieger-Liszkay A (2016) Redox and Reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol 171:1541–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dittami SM, Gravot A, Renault D, Goulitquer S, Eggert A, Bouchereau A, Boyen C, Tonon T (2011) Integrative analysis of metabolite and transcript abundance during the short-term response to saline and oxidative stress in the brown alga Ectocarpus siliculosus. Plant Cell Environ 34(4):629–642

    CAS  PubMed  Google Scholar 

  • Dong MT, Zhang XW, Zhuang ZM, Zou J, Ye NH, Xu D, Mou SL, Liang CW, Wang WQ (2012) Characterization of the LhcSR gene under light and temperature stress in the green alga ulva linza. Plant Mol Biol Rep 30(1):10–16

    CAS  Google Scholar 

  • Dudas A, Chovanec M (2004) DNA double-strand break repair by homologous recombination. Mutat Res 566:131–167

    CAS  PubMed  Google Scholar 

  • Dykens JA, Shick JM (1984) Photobiology of the symbiotic sea-anemone, Anthopleura-Elegantissima—defenses against photodynamic effects, and seasonal photoacclimatization. Biol Bull 167(3):683–697

    CAS  PubMed  Google Scholar 

  • Elbaz A, Wei YY, Meng Q, Zheng Q, Yang ZM (2010) Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology 19:1285–1293

    CAS  PubMed  Google Scholar 

  • Elrad D, Niyogi KK, Grossman AR (2002) A major light-harvesting polypeptide of photosystem II functions in thermal dissipation. Plant Cell 14(8):1801–1816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elsayed KNM, Kolesnikova TA, Noke A, Klock G (2017) Imaging the accumulated intracellular microalgal lipids as a response to temperature stress. 3 Biotech 7(1):41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eom HS, Park S, Lee C-G, Jin ES (2005) Gene expression profiling of an eukaryotic microalga, Haematococcus pluvialis. J Microbiol Biotech 15:1060–1066

    CAS  Google Scholar 

  • Fagundes D, Bohn B, Cabreira C, Leipelt F, Dias N, Bodanese-Zanettini MH, Cagliari A (2015) Caspases in plants: metacaspase gene family in plant stress responses. Funct Integr Genom 15(6):639–649

    CAS  Google Scholar 

  • Fakhry EM, El Maghraby DM (2015) Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina. Bot Stud 56(1):6

    PubMed  PubMed Central  Google Scholar 

  • Fan J, Cui Y, Wan M, Wang W, Li Y (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7:17

    PubMed  PubMed Central  Google Scholar 

  • Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    CAS  PubMed  Google Scholar 

  • Fischer BB, Eggen RIL, Trebst A, Krieger-Liszkay A (2006) The glutathione peroxidase homologous gene GPXH in Chlamydomonas reinhardtii is upregulated by singlet oxygen produced in photosystem II. Planta 223:583–590

    CAS  PubMed  Google Scholar 

  • Franklin DJ, Berges JA (2004) Mortality in cultures of the dinoflagellate Amphidinium carterae during culture senescence and darkness. Proc Biol Sci 271(1553):2099–2107

    PubMed  PubMed Central  Google Scholar 

  • Franklin DJ, Brussaard CP, Berges JA (2006) What is the role and nature of programmed cell death in phytoplankton ecology? Eur J Phycol 41:1–14

    Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64(1):97–112

    CAS  PubMed  Google Scholar 

  • Fu J, Momcilovic I, Clemente TE, Nersesian N, Trick HN, Ristic Z (2008) Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress. Plant Mol Biol 68(3):277–288

    CAS  PubMed  Google Scholar 

  • Fujii S, Yamamoto R, Miyamoto K, Ueda J (1997) Occurrence of jasmonic acid in Dunaliella (Dunaliellales, Chlorophyta). Phycol Res 45(4):223–226

    CAS  Google Scholar 

  • Fulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and cell death. Int J Cell Biol 6:214074

    Google Scholar 

  • Gan SY, Maggs CA (2017) Random mutagenesis and precise gene editing technologies: applications in algal crop improvement and functional genomics. European J Phycol 52(4):466–481

    CAS  Google Scholar 

  • Garcia-Gomez C, Mata MT, Van Breusegem F, Segovia M (2016) Low-steady-state metabolism induced by elevated CO2 increases resilience to UV radiation in the unicellular green-algae Dunaliella tertiolecta. Enviro Exp Bot 132:163–174

    CAS  Google Scholar 

  • García-Jiménez P, Robaina RR (2012) Effects of ethylene on tetrasporogenesis in Pterocladiella Capillacea (Rhodophyta) 1. J Phycol 48:710–715

    PubMed  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M (2014) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA research 21(1):69–84

    CAS  PubMed  Google Scholar 

  • Geider RJ, La Roche J (2002) Redfield revisited: variability of C: N: P in marine microalgae and its biochemical basis. Eur J Phycol 37(1):1–7

    Google Scholar 

  • Geitmann A, Franklin-Tong VE, Emons AC (2004) The self-incompatibility response in Papaver rhoeas pollen causes early and striking alterations to organelles. Cell Death Differ 11:812–822

    CAS  PubMed  Google Scholar 

  • Gerloff-Elias A, Barua D, Molich A, Spijkerman E (2006) Temperature- and pH-dependent accumulation of heat-shock proteins in the acidophilic green alga Chlamydomonas acidophila. FEMS Microbiol Ecol 1 56(3):345–354

    Google Scholar 

  • Giardi MT, Masojídek J, Godde D (1997) Effects of abiotic stresses on the turnover of the D1 reaction centre II protein. Physiol Plant 101(3):635–642

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    CAS  PubMed  Google Scholar 

  • Gonzalez-Fernandez C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30(6):1655–1661

    CAS  PubMed  Google Scholar 

  • Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P (2017) Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9. Plant Cell 29(10):2498–2518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S, Spalding MH (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr Opin Plant Biol 10(2):190–198

    CAS  PubMed  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86(11):377–384

    CAS  PubMed  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol 41:187–223

    CAS  Google Scholar 

  • Hagemann M (2016) Coping with high and variable salinity: molecular aspects of compatible solute accumulation. In: Borowitzka M, Beardall J, Raven J (eds) The physiology of microalgae. Developments in applied phycology, vol 6. Springer, Cham, pp 359–372

    Google Scholar 

  • Harley CD, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJ, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9(2):228–241

    PubMed  Google Scholar 

  • Hawkins AJS (1991) Protein turnover: a functional appraisal. Funct Ecol 5(2):222–233

    Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hema R, Senthil-Kumar M, Shivakumar S, Chandrasekhara Reddy P, Udayakumar M (2007) Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes. Planta 226(3):655–670

    CAS  PubMed  Google Scholar 

  • Hercegova A, Sevcovicova A, Galova E (2008) UV light-induced DNA damage detection in the unicellular green alga Chlamydomonas reinhardtii. Biologia 63(6):958–961

    CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    CAS  PubMed  Google Scholar 

  • Holzinger A, Karsten U (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front Plant Sci 4:327

    PubMed  PubMed Central  Google Scholar 

  • Honjoh K, Yoshimoto M, Joh T, Kajiwara T, Miyamoto T, Hatano S (1995) Isolation and characterization of hardening-induced proteins in Chlorella vulgaris C-27: identification of late embryogenesis abundant proteins. Plant Cell Physiol 36(8):1421–1430

    CAS  PubMed  Google Scholar 

  • Honjoh KI, Matsumoto H, Shimizu H, Ooyama K, Tanaka K, Oda Y, Takata R, Joh T, Suga K, Miyamoto T, Iio M, Hatano S (2000) Cryoprotective activities of group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Biosci Biotechnol Biochem 64(8):1656–1663

    CAS  PubMed  Google Scholar 

  • Hsu T, Sheu R, Lai Y (2000) Possible involvement of a 72-kDa polypeptide in nucleotide excision repair of Chlorella pyrenoidosa identified by affinity adsorption and repair synthesis assay. Plant Sci 156(1):95–102

    CAS  PubMed  Google Scholar 

  • Hu CA, Delauney AJ, Verma DP (1992) A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89(19):9354–9358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    CAS  PubMed  Google Scholar 

  • Huang YS, Pereira SL, Leonard AE (2004) Enzymes for transgenic biosynthesis of long-chain polyunsaturated fatty acids. Biochimie 86(11):793–798

    CAS  PubMed  Google Scholar 

  • Huang X, Huang B, Chen J, Liu X (2016) Cellular responses of the dinoflagellate Prorocentrum donghaiense Lu to phosphate limitation and chronological ageing. J Plankton Res 38(1):83–93

    CAS  Google Scholar 

  • Ikaran Z, Suarez-Alvarez S, Urreta I, Castanon S (2015) The effect of nitrogen limitation on the physiology and metabolism of Chlorella vulgaris var L3. Algal Res 10:134–144

    Google Scholar 

  • Iskandarov U, Sitnik S, Shtaida N, Didi-Cohen S, Leu S, Khozin-Goldberg I, Cohen Z, Boussiba S (2016) Cloning and characterization of a GPAT-like gene from the microalga Lobosphaera incisa (Trebouxiophyceae): overexpression in Chlamydomonas reinhardtii enhances TAG production. J Appl Phycol 28:907–919

    CAS  Google Scholar 

  • Jain M (2015) Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front Plant Sci 6:375

    PubMed  PubMed Central  Google Scholar 

  • Jamers A, Van der Ven K, Moens L, Robbens J, Potters G, Guisez Y, Blust R, De Coen W (2006) Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis. Aquat Toxicol 80(3):249–260

    CAS  PubMed  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Do Choi Y, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131(2):516–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jauzein C, Erdner DL (2013) Stress-related responses in Alexandrium tamarense cells exposed to environmental changes. J Eukaryot Microbiol 60(5):526–538

    CAS  PubMed  Google Scholar 

  • Jiang T, Zhai H, Wang FB, Zhou HN, Si ZZ, He SZ, Liu QC (2014) Cloning and characterization of a salt tolerance-associated gene encoding trehalose-6-phosphate synthase in sweetpotato. J Integr Agric 13:1651–1661

    CAS  Google Scholar 

  • Jiang SY, Chi YH, Wang JZ, Zhou JX, Cheng YS, Zhang BL, Ma A, Vanitha J, Ramachandran S (2015) Sucrose metabolism gene families and their biological functions. Sci Rep 5:17583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez C, Capasso JM, Edelstein CL, Rivard CJ, Lucia S, Breusegem S, Berl T, Segovia M (2009) Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J Exp Bot 60(3):815–828

    PubMed  PubMed Central  Google Scholar 

  • Johannes F, Colot V, Jansen RC (2008) Epigenome dynamics: a quantitative genetics perspective. Nature Rev Genet 9:883–890

    CAS  PubMed  Google Scholar 

  • Judkins RR, Fulkerson W, Sanghvi MK (1993) The dilemma of fossil-fuel use and global climate change. Energy Fuels 7(1):14–22

    CAS  Google Scholar 

  • Kaliszewski P, Zoladek T (2008) The role of Rsp5 ubiquitin ligase in regulation of diverse processes in yeast cells. Acta Biochim Pol 55(4):649–662

    CAS  PubMed  Google Scholar 

  • Kato J, Yamahara T, Tanaka K, Takio S, Satoh T (1997) Characterization of catalase from green algae Chlamydomonas reinhardtii. J Plant Physiol 151(3):262–268

    CAS  Google Scholar 

  • Kebeish R, El-Ayouty Y, Hussein A (2014) Effect of salinity on biochemical traits and photosynthesis-related gene transcription in Chlorella vulgaris Egypt. J Bot 54(2):281–294

    Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2011) Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 93(1):91–100

    CAS  PubMed  Google Scholar 

  • Klahn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13(3):551–562

    PubMed  Google Scholar 

  • Kobayashi Y, Harada N, Nishimura Y, Saito T, Nakamura M, Fujiwara T, Kuroiwa T, Misumi O (2014) Algae sense exact temperatures: small heat shock proteins are expressed at the survival threshold temperature in Cyanidioschyzon merolae and Chlamydomonas reinhardtii. Genome Biol Evol 6(10):273127–273140

    Google Scholar 

  • Kronholm I, Bassett A, Baulcombe D, Collins S (2017) Epigenetic and genetic contributions to adaptation in Chlamydomonas. Mol Biol Evol 34(9):2285–2306

    CAS  PubMed  Google Scholar 

  • Kueger S, Steinhauser D, Willmitzer L, Giavalisco P (2012) High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J 70(1):39–50

    CAS  PubMed  Google Scholar 

  • Kumar M, Kumari P, Gupta V, Anisha PA, Reddy CR, Jha B (2010) Differential responses to cadmium induced oxidative stress in marine macroalga Ulva lactuca (Ulvales, Chlorophyta). Biometals 23(2):315–325

    CAS  PubMed  Google Scholar 

  • Kumar M, Gupta V, Trivedi N, Kumari P, Bijo AJ, Reddy CRK, Jha B (2011) Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Enviro Exp Bot 72(2):194–201

    CAS  Google Scholar 

  • Kumar M, Bijo AJ, Baghel RS, Reddy CR, Jha B (2012) Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol Biochem 51:129–138

    CAS  PubMed  Google Scholar 

  • Kumar M, Kumari P, Reddy C, Jha B (2014) Salinity and desiccation induced oxidative stress acclimation in seaweeds. Adv Bot Res 71:91–123

    Google Scholar 

  • Kumar M, Kuzhiumparambil U, Pernice M, Jiang ZJ, Ralph PJ (2016) Metabolomics: an emerging frontier of systems biology in marine macrophytes. Algal Res Biomass Biofuels Bioprod 16:76–92

    Google Scholar 

  • Kwapisz M, Cholbinski P, Hopper AK, Rousset JP, Zoladek T (2005) Rsp5 ubiquitin ligase modulates translation accuracy in yeast Saccharomyces cerevisiae. RNA 11(11):1710–1718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lander N, Chiurillo MA, Docampo R (2016) Genome Editing by CRISPR/Cas9: a game change in the genetic manipulation of protists. J Eukaryot Microbiol 63(5):679–690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee REC, Brunette S, Puente LG, Megeney LA (2010) Metacaspase Yca1 is required for clearance of insoluble protein aggregates. Proc Natl Acad Sci USA 107(30):13348–13353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J (2012) Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels 5(1):18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemaire SD, Michelet L, Zaffagnini M, Massot V, Issakidis-Bourguet E (2007) Thioredoxins in chloroplasts. Curr Genet 51(6):343–365

    CAS  PubMed  Google Scholar 

  • Lenka SK, Carbonaro N, Park R, Miller SM, Thorpe I, Li Y (2016) Current advances in molecular, biochemical, and computational modeling analysis of microalgal triacylglycerol biosynthesis. Biotechnol Adv 34(5):1046–1063

    CAS  PubMed  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    CAS  PubMed  Google Scholar 

  • Li YJ, Fei XW, Deng XD (2012) Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass Bioenerg 42:199–211

    CAS  Google Scholar 

  • Li LC, Hsu YT, Chang HL, Wu TM, Sung MS, Cho CL, Lee TM (2013) Polyamine effects on protein disulfide isomerase expression and implications for hypersalinity stress in the marine alga Ulva lactuca Linnaeus. J Phycol 49:1181–1191

    PubMed  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19(9):998–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wang Y, Gao H, Xu X (2011) Identification and characterization of genes encoding two novel LEA proteins in Antarctic and temperate strains of Chlorella vulgaris. Gene 482(1–2):51–58

    CAS  PubMed  Google Scholar 

  • Liu J, Sun Z, Zhong Y, Huang J, Hu Q, Chen F (2012) Stearoyl-acyl carrier protein desaturase gene from the oleaginous microalga Chlorella zofingiensis: cloning, characterization and transcriptional analysis. Planta 236(6):1665–1676

    CAS  PubMed  Google Scholar 

  • Liu Z, Zhang L, Pu Y, Liu Z, Zhao Y, Qin S (2014) Cloning and expression of a cytosolic HSP90 gene in Chlorella vulgaris. BioMed Res Int 14:487050

    Google Scholar 

  • Liu C, Wang X, Wang X, Sun C (2016) Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis. Extremophiles 20(4):437–450

    CAS  PubMed  Google Scholar 

  • Los DA, Mironov KS, Allakhverdiev SI (2013) Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth Res 116(2–3):489–509

    CAS  PubMed  Google Scholar 

  • Lu Y, Jiang P, Liu S, Gan Q, Cui H, Qin S (2010a) Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresour Technol 101:6468–6474

    CAS  PubMed  Google Scholar 

  • Lu Y, Chi X, Li Z, Yang Q, Li F, Liu S, Gan Q, Qin S (2010b) Isolation and characterization of a stress-dependent plastidial ∆12 fatty acid desaturase from the Antarctic microalga Chlorella vulgaris NJ-7. Lipids 45(2):179–187

    CAS  PubMed  Google Scholar 

  • Lud D, Buma AG, Van De Poll W, Moerdijk TC, Huiskes AH (2001) DNA damage and photosynthetic performance in the Antarctic terrestrial alga Prasiola Crispa ssp. Antarctica (chlorophyta) under manipulated UV-B radiation. J Phycol 37(4):459–467

    Google Scholar 

  • Luis A, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141(2):330–335

    Google Scholar 

  • Lukes M, Prochazkova L, Shmidt V, Nedbalova L, Kaftan D (2014) Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae). FEMS Microbiol Ecol 89(2):303–315

    CAS  PubMed  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Treholose metabolism in plants. Plant J 79(4):544–567

    CAS  PubMed  Google Scholar 

  • Luo QJ, Zhu ZJ, Yang R, Qian FJ, Yan XJ, Chen HM (2015) Characterization of a respiratory burst oxidase homologue from Pyropia haitanensis with unique molecular phylogeny and rapid stress response. J Appl Phycol 27(2):945–955

    CAS  Google Scholar 

  • Lyon BR, Mock T (2014) Polar microalgae: new approaches towards understanding adaptations to an extreme and changing environment. Biology (Basel) 3(1):56–80

    Google Scholar 

  • Machida T, Murase H, Kato E, Honjoh K, Matsumoto K, Miyamoto T, Iio M (2008) Isolation of cDNAs for hardening-induced genes from Chlorella vulgaris by suppression subtractive hybridization. Plant Sci 175(3):238–246

    CAS  Google Scholar 

  • Maeda H, Sakuragi Y, Bryant DA, Dellapenna D (2005) Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiol 138(3):1422–1435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maksimov EG, Mironov KS, Trofimova MS, Nechaeva NL, Todorenko DA, Klementiev KE, Tsoraev GV, Tyutyaev EV, Zorina AA, Feduraev PV, Allakhverdiev SI, Paschenko VZ, Los DA (2017) Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria. Photosynth Res 133(1–3):215–223

    CAS  PubMed  Google Scholar 

  • Malan C, Greyling MM, Gressel J (1990) Correlation between cu-zn superoxide-dismutase and glutathione-reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci 69(2):157–166

    CAS  Google Scholar 

  • McGlade C, Ekins P (2015) The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517(7533):187–190

    CAS  PubMed  Google Scholar 

  • Merchant SS et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant SS, Kropat J, Liu BS, Shaw J, Warakanont J (2012) TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotech 23(3):352–363

    CAS  PubMed  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Gen 16(4):237

    CAS  Google Scholar 

  • Miranda JA, Avonce N, Suarez R, Thevelein JM, Van Dijck P, Iturriaga G (2007) A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226(6):1411–1421

    CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    CAS  PubMed  Google Scholar 

  • Moharikar S, D’Souza JS, Kulkarni AB, Rao BJ (2006) Apoptotic-like cell death pathway is induced in unicellular chlorophyte Chlamydomonas reinhardtii (chlorophyceae) cells following UV irradiation: Detection and functional analyses1. J Phycol 42(2):423–433

    CAS  Google Scholar 

  • Moreno-Risueno MA, Busch W, Benfey PN (2010) Omics meet networks - using systems approaches to infer regulatory networks in plants. Curr Opin Plant Biol 13(2):126–131

    PubMed  Google Scholar 

  • Müller W, Wegmann K (1978) Sucrose biosynthesis in Dunaliella. Planta 141(2):159–163

    PubMed  Google Scholar 

  • Mulo P, Sakurai I, Aro EM (2012) Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochim Biophys Acta 1817(1):247–257

    CAS  PubMed  Google Scholar 

  • Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115(3):875–879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murik O, Elboher A, Kaplan A (2014) Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii. New Phytol 202(2):471–484

    CAS  PubMed  Google Scholar 

  • Nagao M, Uemura M (2012) Sucrose phosphate phosphatase in the green alga Klebsormidium flaccidum (Streptophyta) lacks an extensive C-terminal domain and differs from that of land plants. Planta 235(4):851–861

    CAS  PubMed  Google Scholar 

  • Nagao M, Matsui K, Uemura M (2008) Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell Environ 31:872–885

    CAS  PubMed  Google Scholar 

  • Nagaria P, Robert C, Rassool FV (2013) DNA double-strand break response in stem cells: mechanisms to maintain genomic integrity. Biochim Biophys Acta 1830(2):2345–2353

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Miyachi S (1982) Effect of temperature on starch degradation in Chlorella vulgaris 11 h cells. Plant Cell Physiol 23(2):333–341

    CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149(1):88–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nama S, Madireddi SK, Devadasu ER, Subramanyam R (2015) High light induced changes in organization, protein profile and function of photosynthetic machinery in Chlamydomonas reinhardtii. J Photochem Photobiol B 152(PtB):367–376

    CAS  PubMed  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101(33):12248–12253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama Y, Murata N (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol 98(21):8777–8796

    CAS  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43(35):11321–11330

    CAS  PubMed  Google Scholar 

  • Nouri MZ, Moumeni A, Komatsu S (2015) Abiotic stresses: insight into gene regulation and protein expression in photosynthetic pathways of plants. Int J Mol Sci 16(9):20392–20416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nuñez A, Savary BJ, Foglia TA, Piazza GJ (2000) Anaerobic lipoxygenase activity from Chlorella pyrenoidosa responsible for the cleavage of the 13-hydroperoxides of linoleic and linolenic acids. Eur J Lipid Sci Technol 102:181–188

    Google Scholar 

  • Nuñez A, Savary BJ, Foglia TA, Piazza GJ (2002) Purification of lipoxygenase from Chlorella: production of 9- and 13-hydroperoxide derivatives of linoleic acid. Lipids 37(11):1027–1032

    PubMed  Google Scholar 

  • Okamoto OK, Robertson DL, Fagan TF, Hastings JW, Colepicolo P (2001) Different regulatory mechanisms modulate the expression of a dinoflagellate iron-superoxide dismutase. J Biol Chem 276(23):19989–19993

    CAS  PubMed  Google Scholar 

  • Oliveira MD, Monteiro M, Robbs P, Leite S (1999) Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aqu Int 7(4):261–275

    Google Scholar 

  • Olsenz JL (2011) Stress ecology in fucus: abiotic, biotic and genetic interactions. Adv Mar Biol 59(57):37

    Google Scholar 

  • Park S, Polle JE, Melis A, Lee TK, Jin E (2006) Up-regulation of photoprotection and PSII-repair gene expression by irradiance in the unicellular green alga Dunaliella salina. Mar Biotechnol (NY) 8(2):120–128

    CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27(1):437–496

    CAS  PubMed  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants-a review. Plant Soil Env 54(3):89

    CAS  Google Scholar 

  • Paul VJ (2008) Global warming and cyanobacterial harmful algal blooms. In: Hudnell HK (ed.) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, Berlin, pp 239–257

  • Pereira SL, Leonard AE, Mukerji P (2003) Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostag Leukotr Ess 68(2):97–106

    CAS  Google Scholar 

  • Peters S, Mundree SG, Thomson JA, Farrant JM, Keller F (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58:1947–1956

    CAS  PubMed  Google Scholar 

  • Petersen JL, Lang DW, Small GD (1999) Cloning and characterization of a class II DNA photolyase from Chlamydomonas. Plant Mol Biol 40(6):1063–1071

    CAS  PubMed  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8(1):33–41

    CAS  PubMed  Google Scholar 

  • Pfister B, Zeeman SC (2016) Formation of starch in plant cells. Cell Mol Life Sci 73(14):2781–2807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Zylkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52–65

    CAS  PubMed  Google Scholar 

  • Plecenikova A, Mages W, Andresson OS, Hrossova D, Valuchova S, Vlcek D, Slaninova M (2013) Studies on recombination processes in two Chlamydomonas reinhardtii. endogenous genes, NIT1 and ARG7. Protist 164(4):570–582

    CAS  PubMed  Google Scholar 

  • Plecenikova A, Slaninova M, Riha K (2014) Characterization of DNA repair deficient strains of Chlamydomonas reinhardtii generated by insertional mutagenesis. PLoS One 9(8):e105482

    PubMed  PubMed Central  Google Scholar 

  • Podkowinski J, Tworak A (2011) Acetyl-coenzyme A carboxylase–an attractive enzyme for biotechnology. BioTechnol 92(4):321–335

    CAS  Google Scholar 

  • Poong SW, Lim PE, Phang SM, Wong CY, Pai TW, Chen CM, Yang CH, Liu CC (2018) Transcriptome sequencing of an Antarctic microalga, Chlorella sp. (Trebouxiophyceae, Chlorophyta) subjected to short-term ultraviolet radiation stress. J Appl Phycol 30(1):87–99

    CAS  Google Scholar 

  • Potin P, Bouarab K, Salaun JP, Pohnert G, Kloareg B (2002) Biotic interactions of marine algae. Curr Opin Plant Biol 5(4):308–317

    CAS  PubMed  Google Scholar 

  • Qian H, Chen W, Sheng GD, Xu X, Liu W, Fu Z (2008) Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris. Aquat Toxicol 88(4):301–307

    CAS  PubMed  Google Scholar 

  • Qian H, Chen W, Li J, Wang J, Zhou Z, Liu W, Fu Z (2009a) The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Aquat Toxicol 92(4):250–257

    CAS  PubMed  Google Scholar 

  • Qian H, Chen W, Sun L, Jin Y, Liu W, Fu Z (2009b) Inhibitory effects of paraquat on photosynthesis and the response to oxidative stress in Chlorella vulgaris. Ecotoxicology 18(5):537–543

    CAS  PubMed  Google Scholar 

  • Qian H, Yu S, Sun Z, Xie X, Liu W, Fu Z (2010) Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. Aquat Toxicol 99(3):405–412

    CAS  PubMed  Google Scholar 

  • Qian H, Pan X, Shi S, Yu S, Jiang H, Lin Z, Fu Z (2011) Effect of nonylphenol on response of physiology and photosynthesis-related gene transcription of Chlorella vulgaris. Environ Monit Assess 182(1–4):61–69

    CAS  PubMed  Google Scholar 

  • Qian H, Pan X, Chen J, Zhou D, Chen Z, Zhang L, Fu Z (2012) Analyses of gene expression and physiological changes in Microcystis aeruginosa reveal the phytotoxicities of three environmental pollutants. Ecotoxicology 21(3):847–859

    CAS  PubMed  Google Scholar 

  • Raman V, Ravi S (2011) Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis. Acta Physiol Plant 33(3):1043–1049

    CAS  Google Scholar 

  • Ras M, Steyer JP, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Bio 12(2):153–164

    CAS  Google Scholar 

  • Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: Installing osmoprotectant synthesis pathways. Ann Bot-London 86(4):709–716

    CAS  Google Scholar 

  • Rathore RS, Garg N, Garg S, Kumar A (2009) Starch phosphorylase: role in starch metabolism and biotechnological applications. Crit Rev Biotechnol 29(3):214–224

    CAS  PubMed  Google Scholar 

  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211(1–4):195–214

    CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Biol 44(1):357–384

    CAS  Google Scholar 

  • Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40(7):871–898

    CAS  PubMed  Google Scholar 

  • Richie DL, Miley MD, Bhabhra R, Robson GD, Rhodes JC, Askew DS (2007) The Aspergillus fumigatus metacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress. Mol Microbiol 63(2):591–604

    CAS  PubMed  Google Scholar 

  • Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188(3):281–289

    CAS  PubMed  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genom 12(1):148

    CAS  Google Scholar 

  • Sabatini SE, Juarez AB, Eppis MR, Bianchi L, Luquet CM, Rios de Molina Mdel C (2009) Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicol Environ Saf 72(4):1200–1206

    CAS  PubMed  Google Scholar 

  • Saheb E, Trzyna W, Bush J (2014) Caspase-like proteins: Acanthamoeba castellanii metacaspase and Dictyostelium discoideum paracaspase, what are their functions? J Biosci 39(5):909–916

    CAS  PubMed  Google Scholar 

  • Sakamoto T, Murata N (2002) Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr Opin Microbiol 5(2):208–210

    PubMed  Google Scholar 

  • Sakuradani E, Kobayashi M, Shimizu S (1999) ∆9-Fatty acid desaturase from arachidonic acid-producing fungus. Eur J Biochem 260(1):208–216

    CAS  PubMed  Google Scholar 

  • Sancar GB (1990) DNA photolyases: physical properties, action mechanism, and roles in dark repair. Mutat Res 236(2–3):147–160

    CAS  PubMed  Google Scholar 

  • Sayre R (2010) Microalgae: The potential for carbon capture. Bioscience 60(9):722–727

    Google Scholar 

  • Scholz B, Liebezeit G (2012) Compatible solutes in three marine intertidal microphytobenthic Wadden Sea diatoms exposed to different salinities. Eur J Phycol 47(4):393–407

    CAS  Google Scholar 

  • Schroda M, Vallon O, Wollman FA, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11(6):1165–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schroda M, Hemme D, Muhlhaus T (2015) The Chlamydomonas heat stress response. Plant J 82(3):466–480

    CAS  PubMed  Google Scholar 

  • Seeberg E, Eide L, Bjoras M (1995) The base excision repair pathway. Trends Biochem Sci 20(10):391–397

    CAS  PubMed  Google Scholar 

  • Segovia M, Haramaty L, Berges JA, Falkowski PG (2003) Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiol 132(1):99–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ševčovičová A, Hamzová A, Gálová E, Vlček D (2008) Use of algae in the study of essential cell processes. Biologia 63(6):952–957

    Google Scholar 

  • Shahsavarani H, Sugiyama M, Kaneko Y, Chuenchit B, Harashima S (2012) Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotech Adv 30(6):1289–1300

    CAS  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids 1. Annu Rev Plant Biol 49(1):611–641

    CAS  Google Scholar 

  • Shanklin J, Somerville C (1991) Stearoyl-Acyl-Carrier-protein desaturase from higher-plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci USA 88(6):2510–2514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shapira M, Lers A, Heifetz PB, Irihimovitz V, Osmond CB, Gillham NW, Boynton JE (1997) Differential regulation of chloroplast gene expression in Chlamydomonas reinhardtii during photoacclimation: light stress transiently suppresses synthesis of the Rubisco LSU protein while enhancing synthesis of the PS II D1 protein. Plant Mol Biol 33(6):1001

    CAS  PubMed  Google Scholar 

  • Shih MD, Hoekstra FA, Hsing YIC (2008) Late embryogenesis abundant proteins. Adv Bot Res 48:211–255

    CAS  Google Scholar 

  • Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K et al (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SC, Sinha RP, Hader DP (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41(4):297–308

    CAS  Google Scholar 

  • Singh P, Kumari S, Guldhe A, Misra R, Rawat I, Bux F (2016) Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew Sust Energ Rev 55:1–6

    CAS  Google Scholar 

  • Sinha RP, Hader DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1(4):225–236

    CAS  PubMed  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14(11):2837–2847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98

    CAS  PubMed  Google Scholar 

  • Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA 106(6):1704–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    CAS  PubMed  Google Scholar 

  • Stauber EJ, Hippler M (2004) Chlamydomonas reinhardtii proteomics. Plant Physiol Bioch 42(12):989–1001

    CAS  Google Scholar 

  • Sulmon C, Van Baaren J, Cabello-Hurtado F, Gouesbet G, Hennion F, Mony C, Renault D, Bormans M, El Amrani A, Wiegand C (2015) Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels? Environ Pollut 202:66–77

    CAS  PubMed  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends in Plant Sci 13(4):178–182

    CAS  Google Scholar 

  • Tanaka S, Ikeda K, Miyasaka H, Shioi Y, Suzuki Y, Tamoi M, Takeda T, Shigeoka S, Harada K, Hirata K (2011) Comparison of three Chlamydomonas strains which show distinctive oxidative stress tolerance. J Biosci Bioeng 112(5):462–468

    CAS  PubMed  Google Scholar 

  • Teramoto H, Ono T, Minagawa J (2001) Identification of Lhcb gene family encoding the light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Plant Cell Physiol 42(8):849–856

    CAS  PubMed  Google Scholar 

  • Thitisaksakul M, Jimenez RC, Arias MC, Beckles DM (2012) Effects of environmental factors on cereal starch biosynthesis and composition. J Cereal Sci 56(1):67–80

    CAS  Google Scholar 

  • Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302(1):17–45

    PubMed  Google Scholar 

  • Tsai DDW, Chen PH, Chou CMJ, Hsu CF, Ramaraj R (2015) Carbon sequestration by alga ecosystems. Ecol Eng 84:386–389

    Google Scholar 

  • Urzica EI, Vieler A, Hong-Hermesdorf A, Page MD, Casero D, Gallaher SD, Kropat J, Pellegrini M, Benning C, Merchant SS (2013) Remodeling of membrane lipids in iron-starved Chlamydomonas. J Biol Chem 288:30246–30258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Usman A, Brazard J, Martin MM, Plaza P, Heijde M, Zabulon G, Bowler C (2009) Spectroscopic characterization of a (6–4) photolyase from the green alga Ostreococcus tauri. J Photochem Photobiol B 96(1):38–48

    CAS  PubMed  Google Scholar 

  • Valledor L, Furuhashi T, Hanak AM, Weckwerth W (2013) Systemic cold stress adaptation of Chlamydomonas reinhardtii. Mol Cell Proteom 12(8):2032–2047

    CAS  Google Scholar 

  • Vallentine P, Hung CY, Xie J, Van Hoewyk D (2014) The ubiquitin–proteasome pathway protects Chlamydomonas reinhardtii against selenite toxicity, but is impaired as reactive oxygen species accumulate. AoB Plants 6:plu062

    PubMed  PubMed Central  Google Scholar 

  • Van Creveld SG, Rosenwasser S, Schatz D, Koren I, Vardi A (2015) Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms. ISME J 9(2):385

    PubMed  Google Scholar 

  • Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96(2):245–254

    CAS  PubMed  Google Scholar 

  • Vavilala SL, Sinha M, Gawde KK, Shirolikar SM, D’Souza JS (2016) KCl induces a caspase-independent programmed cell death in the unicellular green chlorophyte Chlamydomonas reinhardtii (Chlorophyceae). Phycol 55(4):378–392

    CAS  Google Scholar 

  • Vayda ME, Yuan ML (1994) The Heat-Shock response of an Antarctic alga is evident at 5° C. Plant Mol Biol 24(1):229–233

    CAS  PubMed  Google Scholar 

  • Vega JM, Rubiales MA, Vilchez C, Vigara J (2005) Effect of abiotic stress on photosynthesis, respiration and antioxidant system in Chlamydomonas reinhardtii. Phyton 45(3):97–106

    CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759

    CAS  PubMed  Google Scholar 

  • Vidhyavathi R, Venkatachalam L, Sarada R, Ravishankar GA (2008) Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J Exp Bot 59(6):1409–1418

    CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132

    CAS  PubMed  Google Scholar 

  • Vitova M, Bisova K, Kawano S, Zachleder V (2015) Accumulation of energy reserves in algae: from cell cycles to biotechnological applications. Biotechnol Adv 33(6):1204–1218

    PubMed  Google Scholar 

  • Vlcek D, Sevcovicova A, Sviezena B, Galova E, Miadokova E (2008) Chlamydomonas reinhardtii: a convenient model system for the study of DNA repair in photoautotrophic eukaryotes. Curr Gen 53(1):1–22

    CAS  Google Scholar 

  • Von Kampen J, Nieländer U, Wettern M (1995) Expression of ubiquitin genes in Chlamydomonas reinhardtii: involvement in stress response and cell cycle. Planta 197(3):528–534

    Google Scholar 

  • Wada H, Gombos Z, Murata N (1994) Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci USA 91(10):4273–4277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan M, Jin X, Xia J, Rosenberg JN, Yu G, Nie Z, Oyler GA, Betenbaugh MJ (2014) The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana. Appl Microbiol Biotechnol 98(22):9473–9481

    CAS  PubMed  Google Scholar 

  • Wang JX, Zhang XZ, Chen YS, Sommerfeld M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73(7):1121–1128

    CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111(6):1021–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47(3):325–338

    CAS  Google Scholar 

  • Wegmann K (1986) Osmoregulation in eukaryotic algae. FEMS Microbiol Lett 39(1–2):37–43

    CAS  Google Scholar 

  • Wendel AA, Lewin TM, Coleman RA (2008) Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta 1791(6):501–506

    PubMed  PubMed Central  Google Scholar 

  • Wettern M, Parag HA, Pollmann L, Ohad I, Kulka RG (1990) Ubiquitin in Chlamydomonas reinhardii. Distribution in the cell and effect of heat shock and photoinhibition on its conjugate pattern. Eur J Biochem 191(3):571–576

    CAS  PubMed  Google Scholar 

  • Wrona FJ, Prowse TD, Reist JD, Hobbie JE, Levesque LM, Vincent WF (2006) Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35(7):359–369

    CAS  PubMed  Google Scholar 

  • Xu J, Zhang X, Ye N, Zheng Z, Mou S, Dong M, Xu D, Miao J (2013) Activities of principal photosynthetic enzymes in green macroalga Ulva linza: functional implication of C4 pathway in CO2 assimilation. Sci China Life Sci 56(6):571–580

    CAS  PubMed  Google Scholar 

  • Xu T, Li Y, Van Nostrand JD, He Z, Zhou J (2014) Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol 80(5):1544–1552

    PubMed  PubMed Central  Google Scholar 

  • Xue WB, Liu F, Sun Z, Zhou ZG (2016) A delta-9 fatty acid desaturase gene in the microalga Myrmecia incisa reisigl: cloning and functional analysis. Int J Mol Sci 17(7):1143

    PubMed Central  Google Scholar 

  • Yamaoka Y, Achard D, Jang S, Legéret B, Kamisuki S, Ko D, Schulz-Raffelt M, Kim Y, Song WY, Nishida I, Li-Beisson Y, Lee Y (2016) Identification of a Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content. Plant Biotech J 14(11):2158–2167

    CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217(4566):1214–1222

    CAS  PubMed  Google Scholar 

  • Yanguez K, Lovazzano C, Contreras-Porcia L, Ehrenfeld N (2015) Response to oxidative stress induced by high light and carbon dioxide (CO2) in the biodiesel producer model Nannochloropsis salina (Ochrophyta, Eustigmatales). Rev Biol Mar Oceanog 50:163–175

    Google Scholar 

  • Ye ZW, Jiang JG, Wu GH (2008) Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol Adv 26(4):352–360

    CAS  PubMed  Google Scholar 

  • Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M (2014) The role of antioxidant responses on the tolerance range of extreme halophyte Salsola crassa grown under toxic salt concentrations. Ecotoxicol Environ Saf 110:21–30

    CAS  PubMed  Google Scholar 

  • Yokthongwattana K, Chrost B, Behrman S, Casper-Lindley C, Melis A (2001) Photosystem II damage and repair cycle in the green alga Dunaliella salina: involvement of a chloroplast-localized HSP70. Plant Cell Physiol 42(12):1389–1397

    CAS  PubMed  Google Scholar 

  • Yoon K, Han D, Li Y, Sommerfeld M, Hu Q (2012) Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell 24:3708–3724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young AJ (1991) The photoprotective role of carotenoids in higher-plants. Physiol Plant 83(4):702–708

    CAS  Google Scholar 

  • Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154(2):267–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LP, Mehta SK, Liu ZP, Yang ZM (2008) Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 49(3):411–419

    CAS  PubMed  Google Scholar 

  • Zhang N, Wang F, Meng X, Luo S, Li Q, Dong H, Xu Z, Song R (2011) Molecular cloning and characterization of a trehalose-6-phosphate synthase/phosphatase from Dunaliella viridis. Mol Biol Rep 38(4):2241–2248

    CAS  PubMed  Google Scholar 

  • Zhang H, Li W, Li J, Fu W, Yao J, Duan D (2012) Characterization and expression analysis of hsp70 gene from Ulva prolifera J. Agardh (Chlorophycophyta, Chlorophyceae). Mar Genom 5:53–58

    CAS  Google Scholar 

  • Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014a) Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol 152:292–298

    CAS  PubMed  Google Scholar 

  • Zhu S, Wang Y, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014b) Enhanced accumulation of carbohydrate and starch in Chlorella zofingiensis induced by nitrogen starvation. Appl Biochem Biotechnol 174(7):2435–2445

    CAS  PubMed  Google Scholar 

  • Zimmerman D, Vick B (1973) Lipoxygenase in Chlorella pyrenoidosa. Lipids 8(5):264–266

    CAS  PubMed  Google Scholar 

  • Zuo Z, Zhu Y, Bai Y, Wang Y (2012) Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii. Plant Physiol Biochem 51:175–184

    CAS  PubMed  Google Scholar 

  • Zuppini A, Andreoli C, Baldan B (2007) Heat stress: an inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol 48(7):1000–1009

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was sponsored by the research Grants from the Ministry of Higher Education, Malaysia, HiCOE research Grant (IOES-2014H), University of Malaya Postgraduate Research Fund (PG146-2015A) and University of Malaya Research Grant (RP002C-13SUS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.-E. Lim.

Additional information

Communicated by M. Horbowicz.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barati, B., Gan, SY., Lim, PE. et al. Green algal molecular responses to temperature stress. Acta Physiol Plant 41, 26 (2019). https://doi.org/10.1007/s11738-019-2813-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-019-2813-1

Keywords

Navigation