Skip to main content
Log in

Antifungal properties of a thaumatin-like protein from watermelon

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Fusarium wilt is a causal disease that threatens watermelon production. In this work, we report the identification and antifungal activity of a thaumatin-like protein (ClTLP27) that was identified from a Fusarium oxysporum (F. oxysporum)-responsive proteomic analysis during watermelon and F. oxysporum interaction. A two-dimensional gel electrophoresis approach was used to compare changes in the leaf proteome profiles of rootstock-grafted watermelon upon F. oxysporum inoculation, and the abundance of a thaumatin-like protein was found to be differentially accumulated. This thaumatin-like protein gene was further cloned from watermelon and named ClTLP27 (accession no. MF445020). ClTLP27 contains 807 nucleotides and encodes a putative polypeptide of 268 amino acids with a calculated molecular mass of 28.93 kDa and a theoretical pI of 7.65. Sequence alignment showed that ClTLP27 contains the conserved motif with 16 cysteines. Phylogenetic analysis indicated that ClTLP27 belongs to the thaumatin-like protein cluster, and is closely related to the Cucumis TLP gene with a sequence identity of 90%. Real-time PCR analysis revealed that ClTLP27 was expressed in all tissues examined, with the highest levels of expression occurring in the roots. Expression profiles of ClTLP27 following F. oxysporum inoculation revealed that the transcript level of ClTLP27 varied in susceptible and resistant seedlings. ClTLP27 was further cloned into the PET28a(+) vector to obtain a bacterially expressed recombinant His-ClTLP27 protein. Antifungal activity analysis showed that the His-ClTLP27 protein significantly inhibited the mycelial growth of F. oxysporum f.sp. niveum race 1, Fusarium solani f.sp. cucurbitae race 1, F. oxysporum f.sp. melonis, Fusarium verticillioides and Didymella bryoniae. This work implies that ClTLP27 could be used as botanical fungicide or as a potential gene in the engineering of disease-resistant watermelon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharya K, Pal AK, Gulati A, Kumar S, Singh AK, Ahuja PS (2013) Overexpression of Camellia sinensis thaumatin-like protein, CsTLP in potato confers enhanced resistance to Macrophomina phaseolina and Phytophthora infestans infection. Mol Biotechnol 54:609–622

    Article  CAS  Google Scholar 

  • Cao J, Lv YQ, Hou ZR, Li X, Ding LN (2016) Expansion and evolution of thaumatin-like protein (TLP) gene family in six plants. Plant Growth Regul 79:299–307

    Article  CAS  Google Scholar 

  • Chang PFL, Hsu CC, Lin YH, Chen KS, Huang JW, Liou TD (2008) Histopathology comparison and phenylalanine ammonia lyase (PAL) gene expressions in Fusarium wilt infected watermelon. Aust J Agric Res 59:1146–1155

    Article  CAS  Google Scholar 

  • Donoso A, Rodriguez V, Carrasco A, Ahumada R, Sanfuentes E, Valenzuela S (2015) Relative expression of seven candidate genes for pathogen resistance on Pinus radiate infected with Fusarium circinatum. Physiol Mol Plant P 92:42–50

    Article  CAS  Google Scholar 

  • Durick K, Mendlein J, Xanthopoulos KG (1999) Hunting with traps: genome-wide strategies for gene discovery and functional analysis. Genome Res 9:1019–1925

    Article  CAS  Google Scholar 

  • Fierens E, Rombouts S, Gebruers K, Goesaert H, Brijs K, Beaugrand J, Volckaert G, Van Campenhout S, Proost P, Courtin CM, Delcour JA (2007) TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochem J 403:583–591

    Article  CAS  Google Scholar 

  • Freitas CDT, Silva MZR, Bruno-Moreno F, Monteiro-Moreira ACO, Moreira RA, Ramos MV (2015) New constitutive latex osmotin-like proteins lacking antifungal activity. Plant Physiol Biochem 96:45–52

    Article  CAS  Google Scholar 

  • Futamura N, Tani N, Tsumura Y, Nakajima N, Sakaguchi M, Shinohara K (2006) Characterization of genes for novel thaumatin-like proteins in Cryptomeria japonica. Tree Physiol 26:51–62

    Article  CAS  Google Scholar 

  • Gómez-Casado C, Murua-García A, Garrido-Arandia M, González-Melendi P, Sánchez-Monge R, Barber D, Pacios LF, Díaz-Perales A (2014) Alt a 1 from Alternaria interacts with PR5 thaumatin-like proteins. FEBS Lett 588:1501–1508

    Article  Google Scholar 

  • Grenier J, Potvin C, Trudel J, Asselin A (1999) Some thaumatin-like proteins hydrolyse polymeric β-1,3-glucans. Plant J 19:473–480

    Article  CAS  Google Scholar 

  • Guo J, Zhao X, Wang HL, Zheng LD (2016) Expression of the LePR5 gene from cherry tomato fruit induced by Cryptococcus laurentii and the analysis of LePR5 protein antifungal activity. Postharvest Biol Tecnol 111:337–344

    Article  CAS  Google Scholar 

  • Hamamouch N, Li C, Seo PJ, Park CM, Davis EL (2011) Expression of Arabidopsis pathogenesis-related genes during nematode infection. Mol Plant Pathol 12:355–364

    Article  CAS  Google Scholar 

  • Hayashi M, Shiro S, Kanamori H, Mori-Hosokawa S, Sasaki-Yamagata H, Sayama T, Nishioka M, Takahashi M, Ishimoto M, Katayose Y, Kaga A, Harada K, Kouchi H, Saeki Y, Umehara Y (2014) A thaumatin-like protein, Rj4, controls nodule symbiotic specificity in soybean. Plant Cell Physiol 55:1679–1689

    Article  CAS  Google Scholar 

  • Jiang W, Kong QS, Bie ZL (2014) Isolation and identification of the dominant pathogens causing root rot of grafted watermelon. In: 1st ISHS international symposium on vegetable grafting, Wuhan, p 65

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Lecomte C, Alabouvette C, Edel-Hermann V, Robert F, Steinberg C (2016) Biological control of ornamental plant diseases caused by Fusarium oxysporum: a review. Biol Control 101:17–30

    Article  Google Scholar 

  • Lee JM, Oda M (2003) Grafting of herbaceous vegetable and ornamental crops. Hortic Rev 28:61–124

    Google Scholar 

  • Léon-Kloosterziel KM, Verhagen BW, Keurentjes JJ, VanPelt JA, Rep M, VanLoon LC, Pieterse CM (2005) Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle. Plant Mol Biol 57:731–748

    Article  Google Scholar 

  • Li PF, Ren RS, Yao XF, Xu JH, Babu B, Paret ML, Yang XP (2015) Identification and characterization of the causal agent of gummy stem blight from muskmelon and watermelon in East China. J Phytopathol 163:314–319

    Article  CAS  Google Scholar 

  • Liu JJ, Sturrock R, Ekramoddoullah AKM (2010) The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29:419–436

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgenm TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Mallón R, Valladares S, Corredoira E, Vieitez AM, Vidal N (2014) Overexpression of the chestnut CsTL1 gene coding for a thaumatin-like protein in somatic embryos of Quercus robur. Plant Cell Tissue Organ Cult 116:141–151

    Article  Google Scholar 

  • Martyn RD (1991) Resistance to Races 0, 1, and 2 of Fusarium wilt of watermelon in Citrullus sp. PI-296341-FR. HortScience 26:429–432

    Google Scholar 

  • Martyn RD (1996) Fusarium wilt of watermelon. In: Zither TA, Hopkins DL, Thomas CA (eds) Compendium of cucurbit diseases. The American Phytopathology Society, St. Paul

    Google Scholar 

  • Misra RC, Kamthan M, Kumar S, Ghosh S (2016) A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. Sci Rep 6:25340

    Article  CAS  Google Scholar 

  • Narasimhan ML, Damsz B, Coca MA, Ibeas JI, Yun DJ, Pardo JM, Hasegawa PM, Bressan RA (2001) A plant defense response effector induces microbial apoptosis. Mol Cell 8:921–930

    Article  CAS  Google Scholar 

  • Narasimhan M, Coca M, Jin J, Yamauchi T, Ito Y, Kadowaki T, Kim KK, Pardo JM, Damsz B, Hasegawa PM, Yun DJ, Bressan RA (2005) Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 17:171–180

    Article  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB Jr, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation. Embnew News 4:28–30

    Google Scholar 

  • Osmond RIW, Hrmova M, Fontaine F, Imberty A, Fincher GB (2001) Binding interactions between barley thaumatin-like proteins and (1,3)-β-d-glucans. Eur J Biochem 15:4190–4199

    Article  Google Scholar 

  • Parvatha Reddy P (2013) Pathogenesis-related proteins. In: Parvatha Reddy P (ed) Recent advances in crop protection. Springer, Bengaluru

    Chapter  Google Scholar 

  • Ramos MV, de Oliveira RS, Pereira HM, Moreno FB, Lobo MD, Rebelo LM, Brandão-Neto J, de Sousa JS, Monteiro-Moreira AC, Freitas CD, Grangeiro TB (2015) Crystal structure of an antifungal osmotin-like protein from Calotropis procera and its effects on Fusarium solani spores, as revealed by atomic force microscopy: insights into the mechanism of action. Phytochemistry 119:5–18

    Article  CAS  Google Scholar 

  • Rather IA, Awasthi P, Mahajan V, Bedi YS, Vishwakarma RA, Gandhi SG (2015) Molecular cloning and functional characterization of an antifungal PR-5 protein from Ocimum basilicum. Gene 558:143–151

    Article  CAS  Google Scholar 

  • Rout E, Nanda S, Joshi RK (2016) Molecular characterization and heterologous expression of a pathogen induced PR5 gene from garlic (Allium sativum L.) conferring enhanced resistance to necrotrophic fungi. Eur J Plant Pathol 144:345–360

    Article  CAS  Google Scholar 

  • Sassa H, Ushijima K, Hirano H (2002) A pistil-specific thaumatin/PR5-like protein gene of Japanese pear (Pyrus serotina): sequence and promoter activity of the 50 region in transgenic tobacco. Plant Mol Biol 50:371–377

    Article  CAS  Google Scholar 

  • Singh NK, Kumar KRR, Kumar D, Shukla P, Kirti PB (2013) Characterization of a pathogen induced thaumatin-like protein gene AdTLP from Arachis diogoi, a wild peanut. PloS One 8:e83963

    Article  Google Scholar 

  • Singh S, Tripathi RK, Lemaux PG, Buchanan BB, Singh J (2017) Redox-dependent interaction between thaumatin-like protein and ß–glucan influences malting quality of barley. Proc Natl Acad Sci USA 114:7725–7730

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Van Damme EJ, Charels D, Menu-Bouaouiche L, Proost P, Barre A, Rougé P, Peumans WJ (2002) Biochemical, molecular and structural analysis of multiple thaumatin-like proteins from the elderberry tree (Sambucus nigra L.). Planta 214:853–862 s

    Article  Google Scholar 

  • Velazhahan R, Datta SK, Muthukrishnan S (1999) The PR-5 family: thaumatin-like proteins in plants. In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton

    Google Scholar 

  • Wang QH, Li FG, Zhang X, Zhang YG, Hou YX, Zhang SR, Wu ZX (2011) Purification and characterization of a CKTLP protein from Cynanchum komarovii seed that confers antifungal activity. PloS One 6:e16930

    Article  CAS  Google Scholar 

  • Wang L, Yang LH, Zhang JX, Dong J, Yu J, Zhou J, Zhuge Q (2013) Cloning and characterization of a thaumatin-like protein gene PeTLP in Populus deltoides × P. euramericana cv. ‘Nanlin895’. Acta Physiol Plant 35:2985–2998

    Article  CAS  Google Scholar 

  • Wu HS, Raza W, Liu DY, Wu CL, Mao ZS, Xu YC, Shen QR (2008) Allelopathic impact of artificially applied coumarin on Fusarium oxysporum f.sp. niveum. World J Microbiol Biotechnol 24:1297–1304

    Article  CAS  Google Scholar 

  • Yin JL, Shackel NA, Zekry A, McGuinness PH, Richards C, Putten KV, Mccaughan GW, Eris GM, Bishop GA (2001) Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunol Cell Biol 79:213–221

    Article  CAS  Google Scholar 

  • Yun DJ, Zhao Y, Pardo JM, Narasimhan ML, Damsz B, Lee H, Abad LR, D’Urzo MP, Hasegawa PM, Bressan RA (1997) Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. Proc Natl Acad Sci USA 94:7082–7087

    Article  CAS  Google Scholar 

  • Zareie R, Melanson DL, Murphy PJ (2002) Isolation of fungal cell wall degrading proteins from barley (Hordeum vulgare L.) leaves infected with Rhynchosporium secalis. Mol Plant Microbe Interact 15:1031–1039

    Article  CAS  Google Scholar 

  • Zhang M, Yang XP, Xu JH, Liu G, Yao XF, Li PF (2015) Physiological responses of watermelon grafted onto Bottle Gourd to Fusarium oxysporum f.sp. niveum infection. Acta Hortic 1086:107–111

    Article  Google Scholar 

  • Zhang M, Xu JH, Liu G, Yao XF, Ren RS, Yang XP (2017) Proteomic analysis of responsive root proteins of Fusarium oxysporum-infected watermelon seedlings. Plant Soil. https://doi.org/10.1007/s11104-017-3294-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou XG, Everts KL, Bruton BD (2010) Race 3, a new and highly virulent race of Fusarium oxysporum f. sp. niveum causing Fusarium wilt in watermelon. Plant Dis 94:92–98

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2018YFD0100703), National Industrial Technology System for Watermelon & Melon, Title: Breeding of Grafting Rootstocks for Watermelon & Melon (CARS-26), and The earmarked fund for Jiangsu Agricultural Industry Technology System (SXGC[2017]259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Xu.

Additional information

Communicated by E. Kuzniak-Gebarowska.

Man Zhang handles the correspondence at the stages of submission and comments to reviewers.

Jinhua Xu will handle the correspondence at the stage of post-publication.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Xu, J., Liu, G. et al. Antifungal properties of a thaumatin-like protein from watermelon. Acta Physiol Plant 40, 186 (2018). https://doi.org/10.1007/s11738-018-2759-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2759-8

Keywords

Navigation