Skip to main content
Log in

Stomatal responses to long-term high vapor pressure deficits mediated most limitation of photosynthesis in tomatoes

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Plants grown at high vapor pressure deficit (VPD) usually present decreased photosynthesis, but stomatal and mesophyll limitation to photosynthesis remain poorly quantified. To better understand the regulation of high VPD on photosynthesis and plant growth in tomatoes, we investigated the limitation of stomatal conductance and mesophyll conductance to photosynthesis and relative importance of stomatal morphology and function in stomatal conductance. Both the net photosynthesis rate and total biomass were significantly limited by high VPD. Meanwhile, stomatal conductance and mesophyll conductance were decreased under high VPD. The stomatal conductance limitation was responsible for 60% of the total photosynthetic limitation. Moreover, a reduction in stomatal density and stomatal size occurred under high VPD, which was significantly correlated with the down-regulation of stomatal conductance. The stomatal morphology contributed to more than half the change in stomatal conductance. Nevertheless, stomatal movement was also an important factor in regulating stomatal conductance. The decrease of hydraulic conductance and transpiration rate with no significant difference in relative water content, leaf water potential, and/or osmotic potential suggested passive hydraulic regulation in the feedforward responses of stomata to high VPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by the National Science Foundation of China [31471916].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by P. Sowinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Q., Xing, G., Jiao, X. et al. Stomatal responses to long-term high vapor pressure deficits mediated most limitation of photosynthesis in tomatoes. Acta Physiol Plant 40, 149 (2018). https://doi.org/10.1007/s11738-018-2723-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2723-7

Keywords

Navigation