Skip to main content
Log in

Photosynthetic capacity of the capsule wall and its contribution to carbon fixation and seed yield in castor (Ricinus communis L.)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Defoliation occurs in castor due to several reasons, but the crop has propensity to compensate for the seed yield. Photosynthetic efficiency in terms of functional (gas exchange and chlorophyll fluorescence) and structural characteristics (photosynthetic pigment profiles and anatomical properties) of castor capsule walls under light- and dark-adapted conditions was compared with that of leaves. Capsule wall showed high intrinsic efficiency of photosystem II (F v/F m, 0.82) which was comparable to leaves (F v/F m, 0.80). With increasing photon flux densities (PFD), actual quantum yields and photochemical quenching coefficients of the capsule walls were similar to that in leaves, while electron transport rates reached a maximum corresponding to about 118 % of the leaves. However, maximum net photosynthetic rate of the capsule walls (2.60 µmol CO2 m−2 s−1) was less than one-fourth of the leaves (15.67 µmol CO2 m−2 s−1) at the CO2 concentration of 400 µmol mol−1, and the difference was attributed to about 80 % lower stomatal density and the 75 % lower total chlorophyll content of capsule walls than the leaves. Furthermore, seed weight in dark-adapted capsules was 2.70–12.42 % less as compared to the capsules developed under light. The results indicate that castor capsule walls are photosynthetically active (about 15–30 % of the leaves) and contribute significantly to carbon fixation and seed yield accounting for 10 % photoassimilates towards seed weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

F m :

The maximal fluorescence

F o′:

The maximal fluorescence in the light-adapted state

F o :

The minimal fluorescence

F o′:

The minimal fluorescence in the light-adapted state

F s :

The steady-state fluorescence value

qP:

The photochemical quenching

qN:

The non-photochemical quenching

PFD:

The photon flux density

Chl a + b :

Chlorophyll content

C i :

The intercellular CO2 concentration

P N :

Net photosynthesis

R d :

Dark respiration

PS:

Photosystem

References

  • Amor DF (2006) Growth, photosynthesis and chlorophyll fluorescence of sweet pepper plants as affected by the cultivation method. Ann Appl Biol 148:133–139. doi:10.1111/j.1744-7348.2006.00048.x

    Article  Google Scholar 

  • Antlfinger AE, Wendel LF (1997) Reproductive effort and floral photosynthesis in Spiranthes cernua (Orchidaceae). Amer J Bot 84:769–780

    Article  CAS  Google Scholar 

  • Aschan G, Pfanz H (2003) Non-foliar photosynthesis—a strategy of additional carbon acquisition. Flora 198:81–97

    Article  Google Scholar 

  • Aschan G, Pfanz H, Vodnik D, Bati F (2005) Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.). Photosynthetica 43:55–64

    Article  CAS  Google Scholar 

  • Bazzaz FA, Carlson RW, Harper JL (1979) Contribution to reproductive effort by photosynthesis of flowers and fruits. Nature 279:554–555. doi:10.1038/279554a0

    Article  Google Scholar 

  • Blanke MM, Lenz F (1989) Fruit photosynthesis. Plant, Cell Environ 12:31–46. doi:10.1111/j.1365-3040.1989.tb01914.x

    Article  CAS  Google Scholar 

  • Brown AP, Kroon JTM, Swarbreck D, Febrer M, Larson TR, Graham IA, Caccamo M, Slabas AR (2012) Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways. PLoS One 7:e30100. doi:10.1371/journal.pone.0030100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CastorOil (2005) Preview of comprehensive castor oil report. In: A report on castor oil and castor oil derivatives. http://www.castoroil.in. Accessed 15 Apr 2015

  • Cocaliadis MF, Fernandez-Munoz R, Pons C, Orzaez D, Granell A (2014) Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? J Exp Bot 65:4589–4598. doi:10.1093/jxb/eru165

    Article  CAS  PubMed  Google Scholar 

  • Dinesh H, Sundaramoorthy S (2002) Optimization and defoliation tolerance evaluation of four released castor varieties in semi arid farming. Plant Arch 2:285–288

    Google Scholar 

  • Dyer JM, Stymne S, Green AG, Carlsson AS (2008) High-value oils from plants. Plant J 54:640–655. doi:10.1111/j.1365-313X.2008.03430.x

    Article  CAS  PubMed  Google Scholar 

  • Eyles A, Pinkard EA, O’grady AP, Worledge D, Warren CR (2009) Role of corticular photosynthesis following defoliation in Eucalyptus globulus. Plant Cell Environ 32:1004–1014. doi:10.1111/j.1365-3040.2009.01984.x

    Article  CAS  PubMed  Google Scholar 

  • Goffman FD, Ruckle M, Ohlrogge J, Shachar-Hill Y (2004) Carbon dioxide concentrations are very high in developing oilseeds. Plant Physiol Biochem 42:703–708

    Article  CAS  PubMed  Google Scholar 

  • Greenwood JS, Bewley JD (1982) Seed development in Ricinus communis (castor bean). I. Descriptive morphology. Can J Bot 60:1751–1760. doi:10.1139/b82-222

    Article  Google Scholar 

  • Gunstone FD, Harwood JL, Dijkstra AJ (2007) The lipid handbook with CD-ROM, CRC

  • Hetherington SE, Smillie RM, Davies WJ (1998) Photosynthetic activities of vegetative and fruiting tissues of tomato. J Exp Bot 49:1173–1181. doi:10.1093/jxb/49.324.1173

    Article  CAS  Google Scholar 

  • Houston NL, Hajduch M, Thelen JJ (2009) Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism. Plant Physiol 151:857–868. doi:10.1104/pp.109.141622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Zhang S, Cao K (2012) Evidence for leaf fold to remedy the deficiency of physiological photoprotection for photosystem II. Photosynth Res 110:185–191. doi:10.1007/s11120-011-9717-2

    Article  CAS  PubMed  Google Scholar 

  • Imai S, Ogawa K (2009) Quantitative analysis of carbon balance in the reproductive organs and leaves of Cinnamomum camphora (L.) Presl. J Plant Res 122:429–437. doi:10.1007/s10265-009-0233-9

    Article  CAS  PubMed  Google Scholar 

  • Lakshmamma P, Lakshminarayana M, Lakshmi P, Alivelu K, Lavanya C (2009) Effect of defoliation on seed yield of castor (Ricinus communis). Ind J Agric Sci 79:620–623

    Google Scholar 

  • Lakshminarayana M, Raoof MA (2005) Insect pests and diseases of castor and their management. Directorate of Oilseeds Research, Hyderabad, pp 2–28

    Google Scholar 

  • Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–1570. doi:10.1104/pp.114.237107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebon G, Brun O, Magne C, Clement C (2005) Photosynthesis of the grapevine (Vitis vinifera) inflorescence. Tree Physiol 25:633–639

    Article  CAS  PubMed  Google Scholar 

  • Leonardos ED, Rauf SA, Weraduwage SM, Marillia E, Taylor DC, Micallef BJ, Grodzinski B (2014) Photosynthetic capacity of the inflorescence is a major contributor to daily-C-gain and the responsiveness of growth to elevated CO2 in Arabidopsis thaliana with repressed expression of mitochondrial-pyruvate-dehydrogenase-kinase. Environ Exp Bot 107:84–97. doi:10.1016/j.envexpbot.2014.05.007

    Article  CAS  Google Scholar 

  • Li G, Wan S, Zhou J, Yang Z, Qin P (2010) Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind Crops Prod 31:13–19. doi:10.1016/j.indcrop.2009.07.015

    Article  Google Scholar 

  • Lima Neto MC, Lobo AKM, Martins MO, Fontenele AV, Silveira JAG (2014) Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas. J Plant Physiol 171:23–30. doi:10.1016/j.jplph.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  • Maclachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Can J Bot 41:1053–1062. doi:10.1139/b63-088

    Article  CAS  Google Scholar 

  • Marcelis LFM, Hofman-Eijer LRB (1995) The contribution of fruit photosynthesis to the carbon requirement of cucumber fruits as affected by irradiance, temperature and ontogeny. Physiol Plant 93:476–483. doi:10.1111/j.1399-3054.1995.tb06846.x

    Article  CAS  Google Scholar 

  • Prasanna D, Bhargavi G, Manjula (2013) Evaluation of castor varieties based on the performance of erisilkworm Samia cynthia ricini. Int J Biol Pharm Res 4:835–839

    Google Scholar 

  • Proietti P, Famiani F, Tombesi A (1999) Gas exchange in olive fruit. Photosynthesis 36:423–432

    Article  Google Scholar 

  • Qiu LJ, Yang C, Tian B, Yang JB, Liu AZ (2010) Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biol 10:278–288. doi:10.1186/1471-2229-10-278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjan S, Singh R, Soni DK, Pathre UV, Shirke PA (2012) Photosynthetic performance of Jatropha curcas fruits. Plant Physiol Biochem 52:66–76. doi:10.1016/j.plaphy.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  • Reddy KR, Matcha SK (2010) Quantifying nitrogen effects on castor bean (Ricinus communis L.) development, growth, and photosynthesis. Ind Crops Prod 31:185–191. doi:10.1016/j.indcrop.2009.10.004

    Article  CAS  Google Scholar 

  • Ribeiro P, Fernandez L, de Castro R, Ligterink W, Hilhorst HWM (2014) Physiological and biochemical responses of Ricinus communis seedlings to different temperatures. BMC Plant Biol 14:223. doi:10.1186/s12870-014-0223-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues CRF, Silva EN, Da Mata Moura R, Dos Anjos DC, Hernandez FFF, Viégas RA (2014) Physiological adjustment to salt stress in R. communis seedlings is associated with a probable mechanism of osmotic adjustment and a reduction in water lost by transpiration. Ind Crops Prod 54:233–239. doi:10.1016/j.indcrop.2013.12.041

    Article  CAS  Google Scholar 

  • Roggatz U, Mcdonald AJS, Stadenberg I, Schurr U (1999) Effects of nitrogen deprivation on cell division and expansion in leaves of Ricinus communis L. Plant Cell Environ 22:81–89. doi:10.1046/j.1365-3040.1999.00383.x

    Article  Google Scholar 

  • Rolletschek H, Borisjuk L, Koschorreck M, Wobus U, Weber H (2002) Legume embryos develop in a hypoxic environment. J Exp Bot 53:1099–1107. doi:10.1093/jexbot/53.371.1099

    Article  CAS  PubMed  Google Scholar 

  • Salas JJ, Harwood JL, Martinez-Force E (2013) Lipid metabolism in olive: biosynthesis of triacylglycerols and aroma components. In: Aparicio R, Harwood J (eds) Handbook of olive oil: analysis and properties. Springer, New York, pp 97–127

    Chapter  Google Scholar 

  • Sausen TL, Rosa LMG (2010) Growth and carbon assimilation limitations in Ricinus communis (Euphorbiaceae) under soil water stress conditions. Acta Bot Brasil 24:648–654. doi:10.1590/S0102

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to Image J: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Scholz V, Da Silva JN (2008) Prospects and risks of the use of castor oil as a fuel. Biomass Bioenerg 32:95–100. doi:10.1016/j.biombioe.2007.08.004

    Article  CAS  Google Scholar 

  • Severino LS, Auld DL (2013) A framework for the study of the growth and development of castor plant. Ind Crops Prod 46:25–38. doi:10.1016/j.indcrop.2013.01.006

    Article  Google Scholar 

  • Severino LS, Auld DL, Baldanzi M, Cândido MJD, Chen G, Crosby W, Tan D, He X, Lakshmamma P, Lavanya C, Machado OLT, Mielke T, Milani M, Miller TD, Morris JB, Morse SA, Navas AAA, Soares DJ, Sofiatti V, Wang ML, Zanotto MD, Zieler H (2012) A review on the challenges for increased production of castor. Agron J 104:853–880. doi:10.2134/agronj2011.0210

    Article  Google Scholar 

  • Simbo DJ, Van den Bilcke N, Samson R (2013) Contribution of corticular photosynthesis to bud development in African baobab (Adansonia digitata L.) and castor bean (Ricinus communis L.) seedlings. Environ Exp Bot 95:1–5. doi:10.1016/j.envexpbot.2013.07.002

    Article  Google Scholar 

  • Sunmonu N, Ida TY, Kudo G (2013) Photosynthetic compensation by the reproductive structures in the spring ephemeral Gagea lutea. Plant Ecol 214:175–188. doi:10.1007/s11258-012-0157-7

    Article  Google Scholar 

  • Tartachnyk II, Blanke MM (2007) Photosynthesis and transpiration of tomato and CO2 fluxes in a greenhouse under changing environmental conditions in winter. Ann Appl Biol 150:149–156. doi:10.1111/j.1744-7348.2007.00125.x

    Article  CAS  Google Scholar 

  • Upadhyay RK, Soni DK, Singh R, Dwivedi UN, Pathre UV, Nath P, Sane AP (2013) SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth. J Exp Bot 64:772–795. doi:10.1093/jxb/ert162

    Article  Google Scholar 

  • Vallejos M, Rondanini D, Wassner DF (2011) Water relationships of castor bean (Ricinus communis L.) seeds related to final seed dry weight and physiological maturity. Eur J Agron 35:93–101. doi:10.1016/j.eja.2011.04.003

    Article  Google Scholar 

  • Weiss EA (1983) Oilseed Crops. Longman House, Burnt Mill

    Google Scholar 

  • Werk KS, Ehleringer JR (1983) Photosynthesis by flowers in Encelia farinosa and Encelia californica (Asteraceae). Oecol 57:311–315

    Article  Google Scholar 

  • Xu RH, Wang RL, Liu AZ (2011) Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of Jatropha (Jatropha curcas L.). Biomass Bioenerg 35:1683–1692. doi:10.1016/j.biombioe.2011.01.001

    Article  CAS  Google Scholar 

  • Zhang Y, Mulpuri S, Liu A (2016) High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a non-green oilseed crop. Photosynth Res 128:125–140. doi:10.1007/s11120-015-0206-x

    Article  CAS  PubMed  Google Scholar 

  • Zhan D, Yang Y, Hu Y, Zhang Y, Luo H, Zhang W (2014) Contributions of nonleaf organs to the yield of cotton grown with different water supply. Sci World J 2014:1–9. doi:10.1155/2014/602747

    Google Scholar 

  • Zhu X, Govindjee Baker NR, DeSturler E, Ort DR, Long SP (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. Planta 223:114–133. doi:10.1007/s00425-005-0064-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Xiang Zhang for gas exchange measurement and Xuewei Fu for chlorophyll fluorescence measurement. This work was supported by the National Science and technology support program (2015BAD15B02), NSFC grants (31401421 and 31501034) and the “Hundreds of Talents” program of the Chinese Academy of Sciences (to AL) and TWAS-CAS (to MS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aizhong Liu.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest to declare.

Additional information

Communicated by K. Apostol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Mulpuri, S. & Liu, A. Photosynthetic capacity of the capsule wall and its contribution to carbon fixation and seed yield in castor (Ricinus communis L.). Acta Physiol Plant 38, 245 (2016). https://doi.org/10.1007/s11738-016-2263-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2263-y

Keywords

Navigation