Skip to main content
Log in

CsRCI2A and CsRCI2E genes show opposite salt sensitivity reaction due to membrane potential control

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Camelina sativa L. is an emerging biodiesel crop with exceptional cold tolerance. We isolated two small hydrophobic proteins, CsRCI2A and CsRCI2E (rare cold inducible), from Camelina. The proteins displayed high homology with RCI2-related proteins from various species. CsRCI2A contained only two trans-membrane domains but CsRCI2E possessed both trans-membrane domains and a C-terminal tail. Subcellular localization of the two encoded proteins was detected in the plasma membrane and these proteins were induced by salinity stress at 0.2 M NaCl and cold stress at 2 °C. The two genes mediated an early defense to abiotic stresses dependant on the circadian clock. To understand the function of the CsRCI2 proteins, various combinational arrangements of the two genes were transformed into the yeast deletion mutant PMP3. CsRCI2A was able to complement the mutation in yeast under salinity stress (0.5 M NaCl), while CsRCI2E protein was not. However, a truncated version of the protein (CsRCI2E∆58) functionally complemented PMP3. Interestingly, the CsRCI2A+E swapped protein not able to complement to the degree of CsRCI2A, but complemented better than the CsRCI2E protein. A similar pattern was evident concerning restoration of membrane potential in hyperpolarization caused by deletion of PMP3. The results indicate different functions of the CsRCI2A and CsRCI2E proteins in plasma membrane potential regulation during salt stress. The CsRCI2 C-terminal hydrophilic tail likely has a suppressor function and the two hydrophobic domains likely are activators via maintenance of membrane potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BTP:

1,3-bis(tris[hydroxymethyl]methylamino) Propane

CsFAD :

Flavin adenine dinucleotide gene

CsRCI2A :

Camelina sativa rare cold inducible gene A

CsRCI2E :

Camelina sativa rare cold inducible gene E

CBF/DREB:

C-repeat binding factor/dehydration responsive element binding

DTT:

Dithiothreitol

HRP:

Horseradish peroxidase

MOPS:

3-[N-morpholino] propanesulfonic acid

OsLti6 :

Oryza sativa low temperature inducible gene

PBST:

Phosphate buffered saline–tween 20

PMP3 :

Plasma membrane protein 3

PVP:

Polyvinylpyrrolidine

RACE:

Rapid amplification of cDNA ends

SSC:

Saline-sodium citrate

References

  • Ahn SJ, Rengel Z, Matsumoto H (2004) Aluminum-induced plasma membrane surface potential and H+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum. New Phytol 162:71–79

    Article  CAS  Google Scholar 

  • Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883

    Article  PubMed  CAS  Google Scholar 

  • Aleman F, Nieves-Cordones M, Martinez V, Rubio F (2011) Root K+ acquisition in plants: the Arabidopsis thaliana model. Plant Cell Physiol 52:1603–1612

    Article  PubMed  CAS  Google Scholar 

  • Ardie SW, Liu S, Takano T (2010) Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep 29:865–874

    Article  PubMed  CAS  Google Scholar 

  • Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93:607–619

    Article  PubMed  CAS  Google Scholar 

  • Bose J, Xie YJ, Shen WB, Shabala S (2013) Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+-ATPase and by altering SOS1 transcript levels in roots. J Exp Bot 64(2):471–481. doi:10.1093/Jxb/Ers343

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Capel J, Jarillo JA, Salinas J, Martinez-Zapater JM (1997) Two homologous low-temperature-inducible genes from Arabidopsis encode highly hydrophobic proteins. Plant Physiol 115:569–576

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Feng DR, Liu B, Li WY, He YM, Qi KB, Wang HB, Wang JF (2009) Over-expression of a cold-induced plasma membrane protein gene (MpRCI) from plantain enhances low temperature-resistance in transgenic tobacco. Environ Exp Bot 65:395–402

    Article  CAS  Google Scholar 

  • Fu J, Zhang DF, Liu YH, Ying S, Shi YS, Song YC, Li Y, Wang TY (2012) Isolation and characterization of maize PMP3 genes involved in salt stress tolerance. PLoS One 7:e31101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gehringer A, Friedt W, Lühs W, Snowdon RJ (2006) Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome 49:1555–1563

    Article  PubMed  CAS  Google Scholar 

  • Goddard NJ, Dunn MA, Zhang L, White AJ, Jack PL, Hughes MA (1993) Molecular analysis and spatial expression pattern of a low-temperature-specific barley gene, blt101. Plant Mol Biol 23:871–879

    Article  PubMed  CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci. doi:10.3389/Fpls.2014.00151

  • Horie T, Brodsky DE, Costa A, Kaneko T, Lo Schiavo F, Katsuhara M, Schroeder JI (2011) K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiol 156:1493–1507

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hussain K, Nisar MF, Majeed A, Nawaz K, Bhatti KH, Afghan S, Shahazad A, Zia-ul-Hussnian S (2010) What molecular mechanism is adapted by plants during salt stress tolerance? Afr J Biotechnol 9:416–422

    CAS  Google Scholar 

  • Hutcheon C, Ditt RF, Beilstein M, Comai L, Schroeder J, Goldstein E, Shewmaker CK, Nguyen T, De Rocher J, Kiser J (2010) Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biol 10:233

  • Imai R, Koike M, Sutoh K, Kawakami A, Torada A, Oono K (2005) Molecular characterization of a cold-induced plasma membrane protein gene from wheat. Mol Genet Genom 274:445–453

    Article  CAS  Google Scholar 

  • Inada M, Ueda A, Shi WM, Takabe T (2005) A stress-inducible plasma membrane protein 3 (AcPMP3) in a monocotyledonous halophyte, Aneurolepidium chinense, regulates cellular Na+ and K+ accumulation under salt stress. Planta 220:395–402

    Article  PubMed  CAS  Google Scholar 

  • Jarillo J, Capel J, Leyva A, Martínez-Zapater J, Salinas J (1994) Two related low-temperature-inducible genes of Arabidopsis encode proteins showing high homology to 14-3-3 proteins, a family of putative kinase regulators. Plant Mol Biol 25:693–704

    Article  PubMed  CAS  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6(2):275–286

    Article  PubMed  CAS  Google Scholar 

  • Kaddour R, Nasri N, M’rah S, Berthomieu P, Lachaal M (2009) Comparative effect of potassium on K and Na uptake and transport in two accessions of Arabidopsis thaliana during salinity stress. C R Biol 332:784–794

  • Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, Tuteja R, Spillane C, Robinson SJ, Links MG, Clarke C, Higgins EE, Huebert T, Sharpe AG, Parkin IAP (2014) The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun. doi:10.1038/ncomms4706

  • Kang JL, Snapp AR, Lu CF (2011) Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Plant Physiol Biochem 49:223–229

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kim JY, Kim SJ, An KS, An G, Kim SR (2007) Isolation of cold stress-responsive genes in the reproductive organs, and characterization of the OsLti6b gene from rice (Oryza sativa L.). Plant Cell Rep 26:1097–1110

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Oh JM, Luan S, Carlson JE, Ahn SJ (2013) Cold stress causes rapid but differential changes in properties of plasma membrane H+-ATPase of camelina and rapeseed. J Plant Physiol 170(9):828–837

    Article  PubMed  CAS  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Langheinrich U, Daut J (1997) Hyperpolarization of isolated capillaries from guinea-pig heart induced by K+ channel openers and glucose deprivation. J Physiol Lond 502:397–408

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu B, Feng DR, Zhang BP, Mu PQ, Zhang Y, He YM, Qi KB, Wang JF, Wang HB (2012) Musa paradisica RCI complements AtRCI and confers Na+ tolerance and K+ sensitivity in Arabidopsis. Plant Sci 184:102–111

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D, Salgado LEJ, Turner MP, Suller MTE, Murray D (2002) Cycles of mitochondrial energization driven by the ultradian clock in a continuous culture of Saccharomyces cerevisiae. Microbiol Sgm 148:3715–3724

    Article  CAS  Google Scholar 

  • Long R, Zhang F, Li Z, Li M, Cong L, Kang J, Zhang T, Zhao Z, Sun Y, Yang Q (2015) Isolation and functional characterization of salt-stress induced RCI2-like genes from Medicago sativa and Medicago truncatula. J Plant Res 128(4):697–707

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJ, Sanders D (1994) Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci USA 91:9272–9276

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Medina J, Catala R, Salinas J (2001) Developmental and stress regulation of RCI2A and RCI2B, two cold-inducible genes of Arabidopsis encoding highly conserved hydrophobic proteins. Plant Physiol 125:1655–1666

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Medina J, Rodriguez-Franco M, Penalosa A, Carrascosa MJ, Neuhaus G, Salinas J (2005) Arabidopsis mutants deregulated in RCI2A expression reveal new signaling pathways in abiotic stress responses. Plant J 42:586–597

    Article  PubMed  CAS  Google Scholar 

  • Medina J, Ballesteros ML, Salinas J (2007) Phylogenetic and functional analysis of Arabidopsis RCI2 genes. J Exp Bot 58:4333–4346

    Article  PubMed  CAS  Google Scholar 

  • Mitsuya S, Kawasaki M, Taniguchi M, Miyake H (2003) Light dependency of salinity-induced chloroplast degradation. Plant Prod Sci 6:219–223

    Article  Google Scholar 

  • Mitsuya S, Taniguchi M, Miyake H, Takabe T (2005) Disruption of RCI2A leads to over-accumulation of Na+ and increased salt sensitivity in Arabidopsis thaliana plants. Planta 222:1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Mitsuya S, Taniguchi M, Miyake H, Takabe T (2006) Overexpression of RCI2A decreases Na+ uptake and mitigates salinity-induced damages in Arabidopsis thaliana plants. Physiol Plant 128:95–102

    Article  CAS  Google Scholar 

  • Morsy MR, Almutairi AM, Gibbons J, Yun SJ, de Los Reyes BG (2005) The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene 344:171–180

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Nass R, Cunningham KW, Rao R (1997) Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase. Insights into mechanisms of sodium tolerance. J Biol Chem 272:26145–26152

    Article  PubMed  CAS  Google Scholar 

  • Navarre C, Goffeau A (2000) Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. EMBO J 19:2515–2524

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Niu X, Narasimhan ML, Salzman RA, Bressan RA, Hasegawa PM (1993) NaCl regulation of plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte. Plant Physiol 103:713–718

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nylander M, Heino P, Helenius E, Palva ET, Ronne H, Welin BV (2001) The low-temperature- and salt-induced RCI2A gene of Arabidopsis complements the sodium sensitivity caused by a deletion of the homologous yeast gene SNA1. Plant Mol Biol 45:341–352

    Article  PubMed  CAS  Google Scholar 

  • Palmgren MG, Askerlund P, Fredrikson K, Widell S, Sommarin M, Larsson C (1990) Sealed inside-out and right-side-out plasma membrane vesicles: optimal conditions for formation and separation. Plant Physiol 92:871–880

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Park W, Jang YS, Ahn SJ (2010) Construction and characterization of a cDNA library from the Camelina sativa L. as an alternative oil-seed crop. Korean J Crop Sci 55:151–158

    Google Scholar 

  • Putnam DH, Budin JT, Field LA, Breen WM (1993) Camelina: a promising low-put oilseed. New Crops, pp 314–322

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    Article  PubMed  CAS  Google Scholar 

  • Serrano R, Mulet JM, Rios G, Marquez JA, de Larrinoa IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Proft M, Ros R, Montesinos C (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036

    Article  CAS  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Sivankalyani V, Geetha M, Subramanyam K, Girija S (2015) Ectopic expression of Arabidopsis RCI2A gene contributes to cold tolerance in tomato. Transgenic Res 24(2):237–251

    Article  PubMed  CAS  Google Scholar 

  • Sutter J-U, Campanoni P, Tyrrell M, Blatt MR (2006) Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. Plant Cell 18:935–954

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sutter J-U, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR (2007) Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr Biol 17:1396–1402

    Article  PubMed  CAS  Google Scholar 

  • Turkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Vitart V, Baxter I, Doerner P, Harper JF (2001) Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant J 27:191–201

    Article  PubMed  CAS  Google Scholar 

  • Volkov V, Amtmann A (2006) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant J 48:342–353

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Zhu JK (2002) Salt tolerance. Arabidopsis Book Am Soc Plant Biol 1:e0048

    Article  Google Scholar 

  • Yao X, Horie T, Xue S, Leung HY, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI (2010) Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiol 152:341–355

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang CQ, Nishiuchi S, Liu S, Takano T (2008) Characterization of two plasma membrane protein 3 genes (PutPMP3) from the alkali grass, Puccinellia tenuiflora, and functional comparison of the rice homologues, OsLti6a/b from rice. BMB Rep 41:448–454

    Article  Google Scholar 

  • Zhao Y, Tong H, Cai R, Peng X, Li X, Gan D, Zhu S (2014) Identification and characterization of the RCI2 gene family in maize (Zea mays). J Genet 93(3):655–666

    Article  PubMed  CAS  Google Scholar 

  • Zubr J (1997) Oil-seed crop: Camelina sativa. Ind Crops Prod 6:113–119

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of education (2014R1A1A4A01009621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Ju Ahn.

Additional information

Communicated by M Hajduch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 695 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HS., Lee, JE., Jang, HY. et al. CsRCI2A and CsRCI2E genes show opposite salt sensitivity reaction due to membrane potential control. Acta Physiol Plant 38, 50 (2016). https://doi.org/10.1007/s11738-016-2072-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2072-3

Keywords

Navigation