Skip to main content
Log in

Overexpression of NtUBQ2 encoding Ub-extension protein enhances cadmium tolerance by activating 20S and 26S proteasome in tobacco (Nicotiana tabacum)

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The Ub/26S proteasome system removes abnormal proteins and most short-lived regulatory proteins, thereby contributing to cell proliferation, hormone responses, development and resistance to abiotic and biotic stresses. Here we show that cadmium tolerance is related positively to the 20S proteasome (catalytic particle of 26S proteasome) activity in plants. By transforming WT yeast Y800 with a tobacco expression cDNA library, we isolated a tobacco cDNAs, NtUBQ2 (the Ub-extension protein) conferring cadmium tolerance. Overexpression of NtUBQ2 increased cadmium tolerance in transgenic tobacco; 20S proteasome activity was enhanced and ubiquitinated protein level was diminished in response to cadmium. In contrast, proteasome activity was reduced and ubiquitinated protein level was less decreased than transgenic tobacco by Cd treatment in control tobacco which is sensitive to Cd. These observations strongly suggest that plants acquire cadmium tolerance by removing cadmium-damaged proteins via Ub/26S proteasome-dependent proteolysis or Ub-independent 20S proteasome. This finding could be applied to engineering efficient metal phytoremediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Basset G, Raymond P, Malek L, Brouquisse R (2002) Changes in the expression and the enzymatic properties of the 20S proteasome in sugar-starved maize roots. Evidence for an in vivo oxidation of the proteasome. Plant Physiol 128:1149–1162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen KQ, Rubenstein I (1991) Characterization of the structure and transcription of an ubiquitin fusion gene from maize. Gene 107:205–212

    Article  CAS  PubMed  Google Scholar 

  • Di Y, Tamás MJ (2007) Regulation of the arsenic-responsive transcription factor Yap8p involves the ubiquitin-proteasome pathway. J Cell Sci 120:256–264

    Article  CAS  PubMed  Google Scholar 

  • Djebali W, Gallusci P, Polge C, Boulila L, Galtier N, Raymond P, Chaibi W, Brouquisse R (2008) Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants. Planta 227:625–639

    Article  CAS  PubMed  Google Scholar 

  • Farras R, Ferrando A, Jasik J, Kleinow T, OkreszL Tiburcio A, Salchert K, del Pozo C, Schell J, Koncz C (2001) SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J 20:2742–2756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Figueiredo-Pereira ME, Cohen G (1999) The ubiquitin/proteasome pathway: friend or foe in zinc-, cadmium-, and H2O2-induced neuronal oxidative stress. Mol Biol Rep 26:65–69

    Article  CAS  PubMed  Google Scholar 

  • Finley D, Bartel B, Varshavsky A (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosomal biogenesis. Nature 338:394–401

    Article  CAS  PubMed  Google Scholar 

  • Forzani C, Lobreaux S, Mari S, Briat JF, Lebrun M (2002) Metal resistance in yeast mediated by the expression of a maize 20S proteasome subunit. Gene 293:199–204

    Article  CAS  PubMed  Google Scholar 

  • Garbarino JE, Rockhold DR, Belknap WR (1992) Expression of stress-responsive ubiquitin genes in potato tubers. Plant Mol Biol 20:235–244

    Article  CAS  PubMed  Google Scholar 

  • Genschik P, Parmentier Y, Durr A, Marbach J, Criqui MC, Jamet E, Fleck J (1992) Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses. Plant Mol Biol 20:897–910

    Article  CAS  PubMed  Google Scholar 

  • Goller SP, Gorfer M, Kubicek CP (1998) Trichodermareesei prs12 encodes a stress- and unfolded-protein-response-inducible regulatory subunit of the fungal 26S proteasome. Curr Genet 33:284–290

    Article  CAS  PubMed  Google Scholar 

  • Harrison C, Katayama S, Dhut S, Chen D, Jones N, Bähler J, Toda T (2005) SCFPof1-ubiquitin and its target Zip1 transcription factor mediate cadmium response in fission yeast. EMBO J 24(3):599–610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hartmann-Petersen R, Seeger M, Gordon C (2003) Transferring substrates to the 26S proteasome. Trends Biochem Sci 28:26–31

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Klee HJ, Stachel S, Winans SC, Nester EW, Rogers SG, Fraley RT (1986) Analysis of Agrobacterium tumefaciens virulence mutants in leaf discs. Proc Natl Acad Sci USA 83:2571–2575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ingvardsen C, Veierskov B (2001) Ubiquitin- and proteasome-dependent proteolysis in plants. Physiol Plant 112(4):451–459

    Article  CAS  PubMed  Google Scholar 

  • Jungmann J, Reins HA, Schobert C, Jentsch S (1993) Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361:369–371

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick DS, Dale KV, Catania JM, Gandolfi AJ (2003) Low-level arsenite causes accumulation of ubiquitinated proteins in rabbit renal cortical slices and HEK293 cells. Toxicol Appl Pharmacol 186:101–109

    Article  CAS  PubMed  Google Scholar 

  • Krämer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol 115:1641–1650

    PubMed Central  PubMed  Google Scholar 

  • Kwok SF, Staub JM, Deng XW (1999) Characterization of two subunits of Arabidopsis 19S proteasome regulatory complex and its possible interaction with the COP9 complex. J Mol Biol 285:85–95

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Hwang S (2012) Cyc07 enhances arsenite tolerance by reducing As levels in Nicotiana tabacum and Arabidopsis thaliana. Plant Biotechnol Rep 6:391–395

    Article  Google Scholar 

  • Lee SS, Cho HS, Yoon GM, Ahn JW, Kim HH, Pai HS (2003) Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum. Plant J 33:825–840

    Article  CAS  PubMed  Google Scholar 

  • Mao C, Yi K, Yang L, Zheng B, Wu Y, Liu F, Wu P (2004) Identification of aluminum-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminum-regulated genes for the metabolism of cell wall components. J Exp Bot 55:137–143

    Article  CAS  PubMed  Google Scholar 

  • Milla MA, Butler E, Huete AR, Wilson CF, Anderson O, Gustafson JP (2002) Expressed sequence tag-based gene expression analysis under aluminum stress in rye. Plant Physiol 130:1706–1716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park SM, Kim JH, Lee YK, Pyee JH, Cheon CI, Hong CB (1997) Nucleotide sequence of a ubiquitin-extension protein gene in Nicotiana tabacum and its expression pattern upon heat shock. Mol Cells 7:125–130

    CAS  PubMed  Google Scholar 

  • Pena LB, Pasquini LA, Tomaro ML, Gallego SM (2006) Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Sci 171:531–537

    Article  CAS  PubMed  Google Scholar 

  • Pena LB, Pasquini LA, Tomaro ML, Gallego SM (2007) 20S proteasome and accumulation of oxidized and ubiquitinated proteins in maize leaves subjected to cadmium stress. Phytochemistry 68:1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Polge C, Jaquinod M, Holzer F, Bourguignon J, Walling L, Brouquisse R (2009) Evidence for the existence in Arabidopsis thaliana of the proteasome proteolytic pathway: activation in response to cadmium. J Biol Chem 284(51):35412–35424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  PubMed  Google Scholar 

  • Ross-Macdonald P, Sheehan A, Roeder GS, Snyder M (1997) A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:190–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6(7):2180–2198

    Article  CAS  PubMed  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  CAS  PubMed  Google Scholar 

  • Sung DY, Kim TH, Komives EA, Mendoza-Cózatl DG, Schroeder JI (2009) ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. Plant J 59(5):802–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsirigotis M, Zhang M, Chiu RK, Wouters BG, Gray DA (2001) Sensitivity of mammalian cells expressing mutant ubiquitin to protein-damaging agents. J Biol Chem 276:46073–46078

    Article  CAS  PubMed  Google Scholar 

  • Van Nocker S, Vierstra RD (1993) Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway. J Biol Chem 268:24766–24773

    PubMed  Google Scholar 

  • Vido K, Spector D, Lagniel G, Lopez S, Toledano MB (2001) A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Chem 276:8469–8474

    Article  CAS  PubMed  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, the BioGreen21 of the Rural Development Administration, and the Bio-industry Technology Development Program funded by the Ministry for Food, Agriculture, Forestry and Fisheries, KOREA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seongbin Hwang.

Additional information

Communicated by Y. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.D., Hwang, S. Overexpression of NtUBQ2 encoding Ub-extension protein enhances cadmium tolerance by activating 20S and 26S proteasome in tobacco (Nicotiana tabacum). Acta Physiol Plant 37, 22 (2015). https://doi.org/10.1007/s11738-015-1774-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1774-2

Keywords

Navigation