Skip to main content
Log in

Light stress suppresses the accumulation of epimedins A, B, C, and icariin in Epimedium, a traditional medicinal plant

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Epimedium is well-known in China and East Asia due to high content of flavonoid derivatives, including icariin, epimedin A, epimedin B, and epimedin C, hereafter designated as bioactive components, which have been extensively utilized to cure many diseases. So far, the molecular mechanism of the bioactive components biosynthesis remains unclear. In the present study, the effect of light stress (24 h illumination) on the accumulation of bioactive components and the expression of flavonoid genes in Epimedium was investigated. Under light stress, the structural genes CHS1, CHI1, F3H, FLS, DFR1, DFR2, and ANS were remarkably up-regulated while CHS2 and F3′H were significantly down-regulated. For transcription factors, the expression of Epimedium MYB7 and TT8 were increased while Epimedium GL3, MYBF, and TTG1 expression were depressed. Additionally, the content of bioactive components was significantly decreased under light stress. Our results suggested that the decrease of bioactive compounds may be attributed to transcripts of late genes (DFRs and ANS) increased to a higher level than that of early genes (FLS and CHS1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

ANS:

Anthocyanin synthase

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

DFR:

Dihydroflavonol 4-reductase

F3′H:

Flavanone 3′ hydroxylase

F3H:

Flavanone 3 hydroxylase

FLS:

Flavonol synthase

HPLC:

High performance liquid chromatography

PCR:

Polymerase chain reaction

qRT-PCR:

Quantitative real-time PCR

References

  • Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Domínguez E, Wang Z, De Vos RCH, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet 5(12):e1000777. doi:10.1371/journal.pgen.1000777

    Article  PubMed  Google Scholar 

  • Ballester A, Molthoff J, de Vos R, BtL Hekkert, Orzaez D, Fernández-Moreno J-P, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152(1):71–84. doi:10.1104/pp.109.147322

    Article  PubMed  CAS  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39(3):366–380. doi:10.1111/j.1365-313X.2004.02138.x

    Article  PubMed  CAS  Google Scholar 

  • Cai W, Huang J, Zhang S, Wu B, Kapahi P, Zhang X, Shen Z (2011) Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans. PLoS One 6(12):e28835. doi:10.1371/journal.pone.0028835

    Article  PubMed  CAS  Google Scholar 

  • Chiu LW, Li L (2012) Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower. Planta 236(4):1153–1164. doi:10.1007/s00425-012-1665-3

    Article  PubMed  CAS  Google Scholar 

  • Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151(3):1513–1530. doi:10.1104/pp.109.142059

    Article  PubMed  CAS  Google Scholar 

  • Davis MC, Fiehn O, Durnford DG (2013) Metabolic acclimation to excess light intensity in Chlamydomonas reinhardtii. Plant Cell Environ 36(7):1391–1405. doi:0.1111/pce.12071

    Article  CAS  Google Scholar 

  • deVetten N, Quattrocchio F, Mol J, Koes R (1997) The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev 11(11):1422–1434. doi:10.1101/gad.11.11.1422

    Article  CAS  Google Scholar 

  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids: a gold mine for metabolic engineering. Trends Plant Sci 4(10):394–400. doi:10.1016/S1360-1385(99)01471-5

    Article  PubMed  Google Scholar 

  • Fahlman BM, Krol ES (2009) UVA and UVB radiation-induced oxidation products of quercetin. J Photochem Photobiol B: Biol 97(3):123–131. doi:10.1016/j.jphotobiol.2009.08.009

    Article  CAS  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53(5):814–827. doi:10.1111/j.1365-313X.2007.03373.x

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Sun W, Lv H, Xiao G, Zeng S, Wang Y (2012) Isolation and molecular characterization of thirteen R2R3-MYB transcription factors from Epimedium sagittatum. Int J Mol Sci 14(1):594–610. doi:10.3390/ijms14010594

    Article  PubMed  Google Scholar 

  • Islam NM, Yoo HH, Lee MW, Dong M, Park YI, Jeong HS, Kim D-H (2008) Simultaneous quantitation of five flavonoid glycosides in Herba Epimedii by high-performance liquid chromatography–tandem mass spectrometry. Phytochem Anal 19(1):71–77. doi:10.1002/pca.1018

    Article  PubMed  CAS  Google Scholar 

  • Ma H, He X, Yang Y, Li M, Hao D, Jia Z (2011) The genus Epimedium: an ethnopharmacological and phytochemical review. J Ethnopharmacol 134(3):519–541. doi:10.1016/j.jep.2011.01.001

    Article  PubMed  CAS  Google Scholar 

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138(2):1083–1096. doi:10.1104/pp.104.058032

    Article  PubMed  CAS  Google Scholar 

  • Ming L, Chen K, Xian CJ (2013) Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J Cell Physiol 228(3):513–521. doi:10.1002/jcp.24158

    Article  PubMed  CAS  Google Scholar 

  • Schaart JG, Dubos C, Romero De La Fuente I, van Houwelingen AMML, de Vos RCH, Jonker HH, Xu W, Routaboul J-M, Lepiniec L, Bovy AG (2012) Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytol 197:454–467. doi:10.1111/nph.12017

    Article  PubMed  Google Scholar 

  • Spelt C, Quattrocchio F, Mol JNM, Koes R (2000) Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12(9):1619–1631. doi:10.2307/3871178

    PubMed  CAS  Google Scholar 

  • Tong J, Zhang Q, Huang X, Fu X, Qi S, Wang Y, Hou Y, Sheng J, Sun Q (2011) Icaritin causes sustained ERK1/2 activation and induces apoptosis in human endometrial cancer cells. PLoS One 6(3):e16781. doi:10.1371/journal.pone.0016781

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Li Z, Yuan L, Zhang X, Lu D, Huang H, Wang Y (2013) Variation of epimedins A, C and icariin in ten representative populations of Epimedium brevicornu Maxim, and implications for utilization. Chem Biodives 10(4):711–721. doi:10.1002/cbdv.201100424

    Article  CAS  Google Scholar 

  • Zeng S, Xiao G, Guo J, Fei Z, Xu Y, Roe B, Wang Y (2010) Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics 11(1):94. doi:10.1186/1471-2164-11-94

    Article  PubMed  Google Scholar 

  • Zeng S, Liu Y, Zou C, Huang W, Wang Y (2013) Cloning and characterization of phenylalanine ammonia-lyase in medicinal Epimedium species. Plant Cell Tiss Organ 113(2):257–267. doi:10.1007/s11240-012-0265-z

    Article  CAS  Google Scholar 

  • Zhang H, Yang T, Li Z, Wang Y (2008) Simultaneous extraction of epimedin A, B, C and icariin from Herba Epimedii by ultrasonic technique. Ultrason Sonochem 15(4):376–385. doi:10.1016/j.ultsonch.2007.09.002

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Sun J, Fan M, Fan L, Zhou L, Li Z, Han J, Wang B, Guo D (2008) Analysis of phenolic compounds in Epimedium plants using liquid chromatography coupled with electrospray ionization mass spectrometry. J Chromatogr A 1190(1–2):157–181. doi:10.1016/j.chroma.2008.02.109

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31270340 and 31200225), Instrument Developing Project of the Chinese Academy of Sciences (YZ201227), the South China Botanical Garden Startup Fund (201039), and the Knowledge Innovation Project of the Chinese Academy of Sciences (KSCX2-EW-J-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wang.

Additional information

Communicated by K.-Y. Paek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, S., Liu, Y. & Wang, Y. Light stress suppresses the accumulation of epimedins A, B, C, and icariin in Epimedium, a traditional medicinal plant. Acta Physiol Plant 35, 3271–3275 (2013). https://doi.org/10.1007/s11738-013-1361-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1361-3

Keywords

Navigation