Skip to main content

Advertisement

Log in

Morpho-physiological responses of sugar beet (Beta vulgaris L.) genotypes to drought stress

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The identification of morpho-physiological traits related to drought tolerance and high yield potential is a challenge when selecting sugar beet genotypes with greater tolerance to water stress. In this paper, root morphological parameters, antioxidant systems, leaf relative water content (RWC) and H+-ATPase activity as key morpho-physiological traits involved in drought tolerance/susceptibility of sugar beet were studied. Genotypes showing a different drought tolerance index (DTI) but a similar yield potential, under moderate (−0.6 Mpa) and severe (−1.2 MPa) water stress, were selected and their morpho-physiological traits were investigated. The results showed a wide genetic variation in morpho-physiological parameters which demonstrated the different adaptive strategies under moderate and severe drought conditions in sugar beet. In particular, an efficient antioxidant system and redox signalling made some sugar beet genotypes more tolerant to drought stress. The alternative strategy of other genotypes was the reduction of root tissue density, which produced a less dense root system improving the axial hydraulic conductivity. These results could be considered as interesting challenge for a better understanding of the drought tolerance mechanisms in sugar beet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmadi M, Majidi Heravan E, Sadeghian SY, Mesbah M, Darvish MF (2011) Drought tolerance variability in S1 pollinator lines developed from a sugar beet open population. Euphytica 178:339–349

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Bagatta M, Pacifico D, Mandolino G (2008) Evaluation of the osmotic adjustment response within the genus Beta. J Sugar Beet Res 45:119–133

    Article  Google Scholar 

  • Barr HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Bloch D, Hoffmann C (2005) Seasonal development of genotypic differences in sugar beet (Beta vulgaris L.) and their interaction with water supply. J Agron Crop Sci 191:263–272

    Article  CAS  Google Scholar 

  • Bloch D, Hoffmann CM, Marlander B (2006) Impact of water supply on growth, photosynthesis, water use and carbon isotope discrimination of sugar beet in relation to genotypic variability. Eur J Agron 24:218–225

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen KM, Gong HJ, Wang SM, Zheng WJ, Zhang CL (2005) Regulation of the structure and catalytic properties of plasma membrane H+-ATPase involved in adaptation of two reed ecotypes to their different habitats. Biol Plant 49:513–519

    Article  CAS  Google Scholar 

  • Chołuj D, Karwowska R, Ciszewska A, Jasińska M (2008) Influence of long-term drought stress on osmolyte accumulation in sugar beet (Beta vulgaris L.) plants. Acta Physiol Plant 30(5):679–687

    Article  Google Scholar 

  • Ciamporova M, Dekankova K, Ovecka M (1998) Intra- and interspecific variation in root length, root turnover and the underlying parameters. In: Lambers H, Poorter H, VanVuuren MMI (eds) Variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys Publishers, Leiden, pp 57–69

    Google Scholar 

  • Clarke NA, Hetschkun H, Jones C, Boswell E, Marfaing H (1993) Identification of stress tolerance traits in sugar beet. In: Jackson MB, Black CR (eds) Interaction stresses on Plants in a Changing Climate. Springer, Berlin, pp 511–524

    Chapter  Google Scholar 

  • Cruz RT, Jordan WR, Drew MC (1992) Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit. Plant Physiol 99:203–212

    Article  PubMed  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inzè D, Van Breusegen F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • Fernandez GCJ (1992) Effective selection criteria for assessing plant stress tolerance. In: Kuo CG (ed) Adaptation of fodd crops to temperature and water stress, Publication Number 93-410, Asian Vegetable Research Development Center, Shanhua, Taiwan, p 257–270

  • Forbusch B (1983) Assay of the Na+-, K+-ATPase in plasma membrane preparations: increasing the permeability of membrane vesicles using sodium dodecylsulfate buffered with bovine serum albumine. Anal Biochem 128:159–163

    Article  Google Scholar 

  • Gong DS, Xiong YC, Ma BL, Wang TM, Ge JP, Qin XL, Li PF, Kong HY, Li ZZ, Li FM (2010) Early activation of plasma membrane H+-ATPase and its relation to drought adaptation in two contrasting oat (Avena sativa L.) genotypes. Environ Exp Bot 69(1):1–8

    Article  CAS  Google Scholar 

  • Gzik A (1996) Accumulation of proline and pattern of a-amino acids in sugar beet plants in response to osmotic, water and salt stress. Environ Exp Bot 36:29–38

    Article  CAS  Google Scholar 

  • Hernàndez E, Vilagrosa A, Pausas JG, Bellot J (2010) Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecol 207:233–244

    Article  Google Scholar 

  • Hill JO, Simpson RJ, Moore AD, Chapman DF (2006) Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant Soil 286:7–19

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif AES Circular 347:1–32

    Google Scholar 

  • Hoffman CM, Huijbregts T, Swaaji NV, Jansen R (2009) Impact of different environments in Europe on yield and quality of sugar beet genotypes. Eur J Agron 30:17–26

    Article  Google Scholar 

  • Huang B, Eissenstat DM (2000) Linking hydraulic conductivity to anatomy in plants that vary in specific root length. J Am Soc Hortic Sci 125:260–264

    Google Scholar 

  • Hummel I, Vile D, Violle C, Devaux J, Ricci B, Blanchard A, Garnier E, Roumet C (2007) Relating root structure and anatomy to whole-plant functioning in 14 herbaceous Mediterranean species. New Phytol 173(2):313–321

    Article  PubMed  Google Scholar 

  • Hund A, Reimer R, Trachsel S, Ruta N, Stamp P (2009) Meta-analysis of QTLs controlling early root growth in maize. In: Proceedings of 7th ISRR Symposium ‘Root Research and Applications’, Vienna, Austria p 49

  • Jahufer MZZ, Nichols SN, Crush JR, Ouyang L, Dunn A, Ford JL, Care DA, Griffiths AG, Jones CS, Jones CG, Woodfield DR (2008) Genotypic variation for root trait morphology in a white clover mapping population grown. Crop Sci 48(2):487–494

    Article  Google Scholar 

  • Jones PD, Lister DH, Jaggard KW, Pidgeon JD (2003) Future climate change impact on the productivity of sugar beet (Beta vulgaris L.). Eur Clim Change 58:93–108

    Article  Google Scholar 

  • Joseph G, Kelsey RG, Thies WG (1998) Hydraulic conductivity in roots of ponderosa pine infected with black-stain (Leptographium wageneri) or annosus (Heterobasidion annosum) root disease. Tree Physiol 18:333–339

    Article  PubMed  Google Scholar 

  • Kerr S (2000) Variety interactions with sowing, soils and harvest. Brit Sugar Beet Rev 68:18–22

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New York

    Google Scholar 

  • Liu HP, Yu BJ, Zhang WH, Liu YL (2005) Effect of osmotic stress on the activity of H+-ATPase and the levels of covalently and noncovalently conjugated polyamines in plasma membrane preparation from wheat seedling roots. Plant Sci 168:1599–1607

    Article  CAS  Google Scholar 

  • Luković J, Maksimović I, Zorić L, Nagl N, Perčić M, Polić D, Putnik-Delić M (2009) Histological characteristics of sugar beet leaves potentially linked to drought tolerance. Ind Crop Prod 30:281–286

    Article  Google Scholar 

  • Manschadi AM, Cristopher G, Devoil P, Hammer GL (2008) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33(9):823–837

    Article  Google Scholar 

  • Märländer B, Hoffmann C, Koch HJ, Ladewig E, Merkes R, Petersen J, Stockfisch N (2003) Environmental situation and yield performance of the sugar beet crop in Germany: heading for sustainable development. J Agron Crop Sci 189:201–226

    Article  Google Scholar 

  • Michel BE (1983) Evaluation of the water potential of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol 72:66–70

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell Environ 33:566–589

    Article  Google Scholar 

  • Mohammadian R, Khoyi FR, Rahimian H, Moghaddam M, Ghassemi-Golezani K, Sadeghian SY (2001) The effect of early season drought on stomatal conductance, leaf-air temperature difference and proline accumulation in sugar beet genotypes. J Agric Sci Technol 3:181–193

    Google Scholar 

  • Noldt G, Bauch J, Koch G, Schmitt U (2001) Fine roots of Carapa guianensis Aubl. and Swietenia macrophylla King: cell structure and adaptation to the dry season in Central Amazonia. J Appl Bot 75:152–158

    Google Scholar 

  • North GB, Nobel PS (1996) Radial hydraulic conductivity of individual root tissues of Opuntia ficus-indica (L.) Miller as soil moisture varies. Ann Bot 77:133–142

    Article  Google Scholar 

  • Ober ES (2001) The search for drought tolerance in sugar beet. Brit Sugar Beet Rev 69:40–43

    Google Scholar 

  • Ober ES, Luterbacher MC (2002) Genotypic variation for drought tolerance in Beta vulgaris. Ann Bot 89:917–924

    Article  PubMed  Google Scholar 

  • Ober ES, Rajabi A (2011) Abiotic stress in sugar beet. Sugar Tech. doi:10.1007/s12355-010-0035-3

    Google Scholar 

  • Ober ES, Sharp RE (2003) Electrophysiological responses of maize roots to low water potentials: relationship to growth and ABA accumulation. J Exp Bot 54:813–824

    Article  PubMed  CAS  Google Scholar 

  • Ober ES, Sharp RE (2007) Regulation of root growth responses to water deficit. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Springer, Dortrecht, pp 33–53

    Chapter  Google Scholar 

  • Ober ES, Clark CJA, Le Bloa M, Royal A, Jaggard KW, Pidgeon JD (2004) Assessing the genetic resources to improve drought tolerance in sugar beet: agronomic traits of diverse genotypes under droughted and irrigated conditions. Field Crop Res 90:213–234

    Article  Google Scholar 

  • Ober ES, Le Bloa M, Clark CJA, Royal A, Jaggard KW, Pidgeon JD (2005) Evaluation of physiological traits as indirect selection criteria for drought tolerance in sugar beet. Field Crop Res 91:231–249

    Article  Google Scholar 

  • Pandolfini T, Gabrielli R, Camporini C (1992) Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ 15:719–725

    Article  CAS  Google Scholar 

  • Pemàn J, Voltas J, Gil-Pelegrin E (2006) Morphological and functional variability in the root system of Quercus ilex L. subject to confinement: consequences for afforestation. Ann Forest Sci 63:425–430

    Article  Google Scholar 

  • Pidgeon JD, Werker AR, Jaggard KW, Richter GM, Lister DH, Jones PD (2001) Climatic impact on the productivity of sugar beet (Beta vulgaris L.) in Europe 1961–1995. Agr Forest Meteorol 109:27–37

    Article  Google Scholar 

  • Pidgeon JD, Ober ES, Qi A, Clark CJA, Royal A, Jagard KW (2006) Using multi-environment sugar beet variety trials to screen for drought tolerance. Field Crop Res 95:268–279

    Article  Google Scholar 

  • Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Curr Opin Plant Biol 6:379–389

    Article  PubMed  CAS  Google Scholar 

  • Quartacci MF, Navarri-Izzo F (1992) Water stress and free radical mediated changes in sunflower seedlings. J Plant Physiol 139:621–625

    Article  CAS  Google Scholar 

  • Rajabi A, Griffiths H, Ober ES (2009) Carbon isotope discrimination in sugar beet: stability across environments and potential surrogate measures. Field Crop Res 112:172–181

    Article  Google Scholar 

  • Ryser P (1998) Intra- and interspecific variation in root length, root turnover and the underlying parameters. In: Lambers H, Poorter H, Van Vuuren MMI (eds) Inherent variation in plant growth. Physiological mechanism and ecological consequences. Backhuys Publishers, Leiden, pp 441–465

    Google Scholar 

  • Ryser P (2006) The mysterious root length. Plant Soil 286:1–6

    Article  CAS  Google Scholar 

  • Ryser P, Lambers H (1995) Root and leaf attributes accounting for the performance of fast and slow-growing grasses at different nutrient supply. Plant Soil 170:251–265

    Article  CAS  Google Scholar 

  • Sadeghian SY, Yavari N (2004) Effect of water-deficit stress on germination and early seedling growth in sugar beet. J Agron Crop Sci 190:138–144

    Article  Google Scholar 

  • Sadeghian SY, Fazli H, Mohammadian R, Taleghani DF, Mesbah M (2000) Genetic variation for drought stress in sugar beet. J Sugar Beet Res 37:55–77

    Article  Google Scholar 

  • Sanità di Toppi L, Marabottini R, Vattone Z, Musetti R, Favalli MA, Sorgonà A, Badiani M (2005) Cell wall immobilization and antioxidant status of Xanthoria parietina thalli exposed to cadmium. Funct Plant Biol 32(7):611–618

    Article  Google Scholar 

  • Santi S, Locci G, Pinton R, Cesco S, Varanini Z (1995) Plasma membrane H+-ATPase in maize roots induced for NO3 uptake. Plant Physiol 109:1277–1283

    PubMed  CAS  Google Scholar 

  • Sayfzadeh S, Rashidi M (2010) Effect of Drought Stress on Antioxidant Enzyme Activities and Root Yield of Sugar Beet (Beta vulgaris). Am Eurasian J Agric Environ Sci 9(3):223–230

    CAS  Google Scholar 

  • Sharp RE, LeNoble ME (2002) ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot 53:33–37

    Article  PubMed  CAS  Google Scholar 

  • Shaw B, Thomas TH, Cooke DT (2002) Responses of sugar beet (Beta vulgaris L.) to drought and nutrient deficiency stress. Plant Growth Regul 37:77–83

    Article  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2005) Antioxidant defences in olive tree during drought stress: changes in activity of some antioxidant enzymes. Funct Plant Biol 32(1):45–53

    Article  CAS  Google Scholar 

  • Tsialtas JT, Maslaris N (2012) Leaf physiological traits and their relation with sugar beet cultivar success in two contrasting environments. Int J Plant Prod 6:15–36

    Google Scholar 

  • Tucker SS, Craine JM, Nippert JB (2011) Physiological drought tolerance and the structuring of tallgrass prairie assemblages. Ecosphere 2:1–19

    Article  Google Scholar 

  • Vasellati V, Oesterheld M, Medan D, Loreti J (2001) Effects of flooding and drought on the anatomy of Paspalum dilatatum. Ann Bot 88:355–360

    Article  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu JH, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  PubMed  CAS  Google Scholar 

  • Wahl S, Ryser P (2000) Root tissue structure is linked to ecological strategies of grasses. New Phytol 148(3):459–471

    Article  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song C-P (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Sorgonà.

Additional information

Communicated by J. V. Jorrin-Novo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, A., Sorgonà, A., Lupini, A. et al. Morpho-physiological responses of sugar beet (Beta vulgaris L.) genotypes to drought stress. Acta Physiol Plant 35, 853–865 (2013). https://doi.org/10.1007/s11738-012-1129-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1129-1

Keywords

Navigation