Skip to main content

Advertisement

Log in

Diurnal changes in leaflet gas exchange, water status and antioxidant responses in Carapa guianensis plants under water-deficit conditions

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Young Carapa guianensis plants were examined under well-watered (control) and water-deficit conditions with the aim to evaluate possible relationship between diurnal changes in leaflet gas exchange with lipid peroxidation and adjustments in antioxidative responses. Treatment comparisons were assessed when leaflet water potential (Ψw) in water-stressed plants reached around −2.5 ± 0.5 MPa at pre-dawn. Regardless of watering regime, the highest net CO2 assimilation rate and stomatal conductance were recorded until 9:00 h. Control plants showed diurnal increases in transpiration, while it was strongly decreased in water-stressed plants. Diurnal decreases in intercellular to ambient CO2 concentration ratio were just observed in stressed plants. Regardless of watering regime, non-significant changes (P > 0.05) in Ψw and relative water content were registered throughout the day; however, both variables were significantly lower (P < 0.05) in stressed plants. Malondialdehyde concentration did not vary throughout the day, but it was higher in stressed plants. Excepting for guaiacol-type peroxidase, the antioxidant enzyme activities varied throughout the day regardless of watering regimes. Nevertheless, increases in antioxidant enzymes were more expressive in water-stressed plants. Despite, a relationship between diurnal changes in A and g s and lipid peroxidation or antioxidant enzymes was unclear regardless of watering regimes. Thus, we conclude that although plants from both watering regimes were able to adjust antioxidant enzymes activities throughout the day, the water-stressed plants were more susceptible to damages to net CO2 assimilation and suffered more expressive oxidative damages to lipids than plants grown under well-watered conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

Net CO2 assimilation rate

APX:

Ascorbate peroxidase

CAT:

Catalase

C i/C a :

Intercellular to ambient CO2 concentration ratio

E :

Transpiration rate

GB:

Glycinebetaine

GPX:

Guaiacol peroxidase

g s :

Stomatal conductance to water vapor

MDA:

Malondialdehyde

RWC:

Relative water content

SOD:

Superoxide dismutase

Ψpd :

Pre-dawn leaflet water potential

Ψw :

Leaflet water potential

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Brasil EC, Cravo MS (2007) Interpretação dos Resultados de Análises de Solo. In: Cravo MS, Viégas IJM, Brasil EC (eds) Recomendações de Adubação e Calagem para o Estado do Pará. Embrapa Amazônia Oriental, Belém, pp 43–47

    Google Scholar 

  • Cakmak I, Horst J (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine Max). Physiol Plant 83:463–468. doi:10.1111/j.1399-3054.1991.tb00121.x

    Article  CAS  Google Scholar 

  • Carvalho CJR (2005) Responses of Schizolobium amazonicum [S. parahyba var. Amazonicum] and Schizolobium parahyba [Schizolobium parahybum] plants to water stress. Rev Árvore 29:907–914. doi:10.1590/S0100-67622005000600009

    Article  Google Scholar 

  • Chen THH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505. doi:10.1016/j.tplants.2008.06.007

    Article  PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Env 35:1–20. doi:10.1111/j.1365-3040.2010.02232.x

    Article  CAS  Google Scholar 

  • Cordeiro YEM, Pinheiro HA, Santos Filho BG, Corrêa SS, Silva JRR, Dias-Filho MB (2009) Physiological and morphological responses of young mahogany (Swietenia macrophylla King) plants to drought. For Ecol Manage 258:1449–1455. doi:10.1016/j.foreco.2009.06.054

    Article  Google Scholar 

  • Costa GF, Marenco RA (2007) Photosynthesis, stomatal conductance and leaf water potential in young trees of andiroba (Carapa guianensis). Acta Amazon 28:101–126

    Google Scholar 

  • Costa H, Gallego SM, Tomaro ML (2002) Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Sci 162:939–945. doi:10.1016/S0168-9452(02)00051-1

    Article  CAS  Google Scholar 

  • Costa MA, Pinheiro HA, Shimizu ESC, Fonseca FT, Santos Filho BGS, Moraes FKC, Figueiredo DM (2010) Lipid peroxidation, chloroplastic pigments and antioxidant strategies in Carapa guianensis (Aubl.) subjected to water-deficit and short-term rewetting. Trees 24:275–283. doi:10.1007/s00468-009-0397-x

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333. doi:10.1111/j.1439-037X.2008.00323.x

    Article  CAS  Google Scholar 

  • García-Plazaola JI, Artetxe U, Becerril JM (1999) Diurnal changes in antioxidant and carotenoid composition in the Mediterranean schlerophyll tree Quercus ilex (L.) during winter. Plant Sci 143:125–133. doi:10.1016/S0168-9452(99)00034-5

    Article  Google Scholar 

  • Giannopolitis CN, RIES SK (1977) Superoxide dismutases I: occurrence in higher plants. Plant Physiol 59:309–314. doi:10.1104/pp.59.2.309

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves JFC, Silva CEM, Guimarães DG (2009) Photosynthesis and water potential of andiroba seedlings submitted to water stress and rewetting. Pesq Agropeqc Bras 44:8–14

    Article  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307. doi:10.1007/BF02374789

    Article  CAS  Google Scholar 

  • Havir EA, McHale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455. doi:10.1104/pp.84.2.461

    Article  PubMed  CAS  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Inès J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436. doi:10.1007/s11738-009-0275-6

    Article  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Lawlor DH (1995) The effects of water deficit on photosynthesis. In: Smirnoff N (ed) Environment and plant metabolism—flexibility and acclimation. BIOS Scientific Publishers, Oxford, pp 129–156

    Google Scholar 

  • Lawlor DH, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294. doi:10.1046/j.0016-8025.2001.00814.x

    Article  PubMed  CAS  Google Scholar 

  • Marchi S, Tognetti R, Minnocci A, Borghi M, Sebastiani L (2008) Variation in mesophyll anatomy and photosynthetic capacity during leaf development in a deciduous mesophyte fruit tree (Prunus persica) and an evergreen sclerophyllus Mediterranean shrub (Olea europea). Trees 22:559–571. doi:10.1007/s00468-008-0216-9

    Article  CAS  Google Scholar 

  • Marenco RA, Gonçalves JFC, Vieira G (2001) Leaf gas exchange and carbohydrates in tropical trees differing in successional status in two light environments in central Amazonia. Tree Physiol 21:1311–1318. doi:10.1093/treephys/21.18.1311

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. doi:10.1016/j.tplants.2004.08.009

    Article  PubMed  CAS  Google Scholar 

  • Møller IM, Sweetlove LJ (2010) ROS signalling—specificity is required. Trends Plant Sci 15:370–374. doi:10.1016/j.tplants.2010.04.008

    Article  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Peltzer D, Polle A (2001) Diurnal fluctuations of antioxidative systems in leaves of field-grown beech trees (Fagus sylvatica): responses to light and temperature. Physiol Plant 111:158–164. doi:10.1034/j.1399-3054.2001.1110205.x

    Article  CAS  Google Scholar 

  • Pinheiro HA, DaMatta FM, Chaves ARM, Fontes EPB, Loureiro ME (2004) Drought tolerance in relation to protection against oxidative stress in clone of coffea canephora subjected to long-term drought. Plant Sci 167:1307–1314. doi:10.1016/j.plantsci.2004.06.027

    Article  CAS  Google Scholar 

  • Pinheiro HA, Silva JV, Endres L, Ferreira VM, Câmara CA, Cabral FF, Oliveira JF, Carvalho LWT, Santos JM, Santos Filho BG (2008) Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L.) seedlings subjected to salt stress conditions. Ind Crops Prod 27:385–392. doi:10.1016/j.indcrop.2007.10.003

    Article  CAS  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462. doi:10.1104/pp.126.1.445

    Article  PubMed  CAS  Google Scholar 

  • Raza SH, Athar HR, Ashraf M, Hameed A (2007) Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ Exp Bot 60:368–376. doi:10.1016/j.envexpbot.2006.12.009

    Article  CAS  Google Scholar 

  • Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141:367–372. doi:10.1104/pp.106.077925

    Article  PubMed  CAS  Google Scholar 

  • Slavick B (1979) Methods of studying plant water relations. Springer, New York

    Google Scholar 

  • Smirnoff N (1995) Antioxidant systems and plant response to the environment. In: Smirnoff N (ed) Environment and plant metabolism-flexibility and acclimation. BIOS Scientific Publishers, Oxford, pp 217–243

    Google Scholar 

  • Yang X, Wen X, Gong H, Lu Q, Yang Z, Tang Y, Liang Z, Lu C (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–733. doi:10.1007/s00425-006-0380-3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The scholarships were granted by the Conselho Nacional de Desenvolvimento Científico e Tecnológico/CNPq to K.S. Carvalho, D.D. Silva Júnior, G.L.S. Castro, and B.S. Fujiyama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Alves Pinheiro.

Additional information

Communicated by P. Wojtaszek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, K.d.S., Pinheiro, H.A., Festucci-Buselli, R.A. et al. Diurnal changes in leaflet gas exchange, water status and antioxidant responses in Carapa guianensis plants under water-deficit conditions. Acta Physiol Plant 35, 13–21 (2013). https://doi.org/10.1007/s11738-012-1043-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1043-6

Keywords

Navigation