Skip to main content
Log in

Cadmium disrupts apoplastic ascorbate redox status in barley root tips

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Using a short-term Cd treatment (5–30 min), we analysed the effect of Cd on apoplastic ascorbate redox status and their regeneration during the recovery period in barley root tips. Root growth inhibition induced by 15 μM Cd was detectable after 5 min of exposure and increased in a time-dependent manner up to 15 min of exposure. High 30 μM Cd concentration completely inhibited root growth during the first 6 h after short-term treatment. In parallel with Cd-induced root growth inhibition, a rapid decrease of apoplastic ascorbate dehydroascorbate ratio was observed immediately after short-term treatments. During the recovery from 15 μM Cd short-term treatment, apoplastic ascorbate was rapidly regenerated to the control level in the first root segment containing meristem and elongation zone. In contrast to 15 μM Cd treatment, in 30 μM Cd-treated roots apoplastic ascorbate level was sustained at a significantly lower level compared to control roots. We confirmed that a decrease of apoplastic ascorbate/dehydroascorbate ratio in the elongation zone was associated with root growth inhibition or arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ASC:

Ascorbate

DHA:

Dehydroascorbate

DTT:

Dithiothreitol

G6PDH:

Glucose-6-phosphate dehydrogenase

ROS:

Reactive oxygen species

References

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Córdoba-Pedregosa MC, González-Reyes JA, Cañadillas MS, Navas P, Córdoba F (1996) Role of apoplastic and cell-wall peroxidases on the stimulation of root elongation by ascorbate. Plant Physiol 112:1119–1125

    PubMed Central  PubMed  Google Scholar 

  • Córdoba-Pedregosa MC, Córdoba F, Villalba JM, González-Reyes JA (2003) Zonal changes in ascorbate and hydrogen peroxide contents, peroxidase, and ascorbate-related enzyme activities in onion roots. Plant Physiol 131:697–706

    Article  Google Scholar 

  • Córdoba-Pedregosa MC, Villalba JM, Córdoba F, González-Reyes JA (2005) Changes in intracellular and apoplastic peroxidase activity, ascorbate redox status, and root elongation induced by enhanced ascorbate content in Allium cepa L. J Exp Bot 56:685–694

    Article  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Int Plant Biol 50:1268–1280

    Article  CAS  Google Scholar 

  • De Tullio MC, Liso R, Arrigoni O (2004) Ascorbic acid oxidase: an enzyme in search of a role. Biol Plant 48:161–166

    Article  Google Scholar 

  • Fodor E, Szabó-Nagy A, Erdei L (1995) The effects of cadmium in the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 147:87–92

    Article  CAS  Google Scholar 

  • Fojtová M, Kovařík A (2000) Genotoxic effect of cadmium is associated with apoptotic changes in tobacco cells. Plant Cell Environ 23:531–537

    Article  Google Scholar 

  • Fujimaki S, Suzui N, Ishioka NS, Kawachi N, Ito S, Chino M, Nakamura S (2010) Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol 152:1796–1806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fusconi A, Repetto O, Bona E, Massa N, Gallo C, Dumas-Gaudot E, Berta G (2006) Effect of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings. Environ Exp Bot 58:253–260

    Article  CAS  Google Scholar 

  • Gallego S, Benavides M, Tomaro M (2002) Involvement of an antioxidant defence system in the adaptive response to heavy metal ions in Helianthus annuus L. cells. Plant Growth Regul 36:267–273

    Article  CAS  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel J-P, Blein J-P, Ranjeva R, Montillet J-L (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    Article  CAS  PubMed  Google Scholar 

  • González-Reyes JA, Hidalgo A, Caler JA, Palos R, Navas P (1994a) Nutrient uptake changes in ascorbate free radical-stimulated onion roots. Plant Physiol 104:271–276

    PubMed Central  PubMed  Google Scholar 

  • González-Reyes JA, Alcaín FJ, Caler JA, Serrano A, Córdoba F, Navas P (1994b) Relationship between apoplastic ascorbate regeneration and the stimulation of root growth in Allium cepa L. Plant Sci 100:23–29

    Article  Google Scholar 

  • Horemans N, Potters G, Caubergs RJ, Asard H (1998) Transport of ascorbate into protoplasts of Nicotiana tabacum Bright Yellow-2 cell line. Protoplasma 205:114–121

    Article  CAS  Google Scholar 

  • Horemans N, Raeymaekers T, van Beek K, Nowicin A, Blust R, Broos K, Cuypers A, Vangronsveld J, Guisez Y (2007) Dehydroascorbate uptake is impaired in the early response of Arabidopsis plant cell cultures to cadmium. J Exp Bot 58:4307–4317

    Article  CAS  PubMed  Google Scholar 

  • Janicka-Russak M, Kabala K, Burzynski M, Klobus G (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot 59:3721–3728

    Article  CAS  PubMed  Google Scholar 

  • Kato N, Esaka M (2000) Expansion of transgenic tobacco protoplasts expressing pumpkin ascorbate oxidase is more rapid than that of wild-type protoplasts. Planta 210:1018–1022

    Article  CAS  PubMed  Google Scholar 

  • Koreňovská M, Poláčeková O (2000) Trace elements content in virgin sunflower oil production. Czech J Food Sci 18:61–65

    Google Scholar 

  • López-Millán A-F, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Exp Environ Bot 65:376–385

    Article  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  PubMed  Google Scholar 

  • Podazza G, Rosa M, González JA, Hilal M, Prado FE (2006) Cadmium induces changes in sucrose partitioning, invertase activities, and membrane functionality in roots of Rangpur lime (Citrus limonia L. Osbeck). Plant Biol 8:706–714

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Noctor G (2007) A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsi rosette development. Anal Biochem 363:58–69

    Article  CAS  PubMed  Google Scholar 

  • Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20:600–608

    Article  CAS  Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669

    Article  CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Plant Sci 19:267–290

    Article  CAS  Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:1103–1114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeh C-M, Chien P-S, Huang H-J (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58:659–671

    Article  CAS  PubMed  Google Scholar 

  • Zheng R, Li H, Jiang R, Römheld V, Zhang F, Zhao F-J (2011) The role of root hairs in cadmium acquisition by barley. Environ Pollut 159:408–415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Margita Vašková for excellent technical assistance. This work was supported by the Grant agency VEGA, project No. 2/0050/10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Tamás.

Additional information

Communicated by G. Klobus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bočová, B., Mistrík, I., Pavlovkin, J. et al. Cadmium disrupts apoplastic ascorbate redox status in barley root tips. Acta Physiol Plant 34, 2297–2302 (2012). https://doi.org/10.1007/s11738-012-1030-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1030-y

Keywords

Navigation