Skip to main content
Log in

Variation of phenolic composition and biological activities in Limoniastrum monopetalum L. organs

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Changes in phenolic composition and biological activities were investigated in different Limoniastrum monopetalum L. organs. For that, 80% aqueous acetone extracts were used to estimate total phenolic contents and their antioxidant activities were evaluated using DPPH· and O ·−2 radical scavenging activities and reducing power. The efficiency of organ extracts was tested against human pathogen strains. Ultimately, acid hydrolysis of all organs was subjected to RP-HPLC for phenolic identification. Results showed that flower extracts exhibited the highest polyphenol (65.42 GAE/g DW) and flavonoid (35.36 CE/g DW) contents. Stems were enriched in condensed tannin content (21.4 mg CE/g DW) and displayed the best antiradical activities and the highest reducing power. Besides, stem and gall extracts showed the highest efficiency against pathogenic bacteria as compared with those of flower. Concerning the antifungal test, a slight activity was found in gall extracts. The RP-HPLC showed a difference in phenolic compounds that varied as function of organ. In fact, the major phenolic compound varied as function of organ. Results suggest that L. monopetalum could be a promising source of biomolecules for therapeutic and nutraceutical industries and the difference between organs may be related to their physiological role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

IC50 :

Inhibition concentration at 50%

EC50 :

Effective concentration at which the absorbance was 0.5

ATCC:

American type culture collection

NCIMB:

National Collection of Industrial Marine and Food Bacteria

PMS:

Phenazine methosulfate

NADH:

Nicotinamide adenine dinucleotide

NBT:

Nitro-tetrazolium blue chloride

BHT:

Butylated hydroxytoluene

GAE:

Gallic acid equivalents

CE:

Catechin equivalents

References

  • Aidi Wannes W, Mhamdi B, Sriti J, Ben Jemia M, Ouchikh O, Hamdaoui G, Kchouk ME, Marzouk B (2010) Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var italica L.) leaf, stem and flower. Food Chem Toxicol 48:1362–1370

    Article  PubMed  CAS  Google Scholar 

  • Atmani D, Chaher N, Berboucha M, Ayouni K, Lounis H, Boudaoud H, Debbache N, Atmani D (2009) Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem 112:303–309

    Article  CAS  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Bano MJ, Lorente J, Castillo J, Benavente-Garcia O, Rio JA, Otuno A, Quirin KW, Gerard D (2003) Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis and antioxidant activity. J Agricult Food Chem 51:4247–4253

    Article  Google Scholar 

  • Belboukhari N, Cherit A (2005) Antimicrobial activity of aerial part crude extracts from Limoniastrum feei. Asian J Plant Sci 4(5):496–498

    Article  Google Scholar 

  • Bennett RC, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. Tansley Review No. 72. New Phytol 127:617–633

    Article  CAS  Google Scholar 

  • Boots AW, Haenen GRMM, Bast A (2008) Health effects of quercetin: From antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    Article  PubMed  CAS  Google Scholar 

  • Bourgou S, Ksouri R, Bellila A, Skandrani I, Falleh H, Marzouk B (2008) Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. C R Biol 331:48–55

    Article  PubMed  CAS  Google Scholar 

  • Carbone K, Giannini B, Picchi V, Lo Scalzo R, Cecchini F (2011) Phenolic composition and free radical scavenging activity of different apple varieties in relation to the cultivar, tissue type and storage. Food Chem 127:493–500

    Article  CAS  Google Scholar 

  • Carvalho IS, Cavaco T, Brodelius M (2011) Phenolic composition and antioxidant capacity of six artemisia species. Ind Crop Prod 33:382–388

    Article  CAS  Google Scholar 

  • Chaieb M, Boukhris M (1998) Flore succincte et illustrée des zones arides et sahariennes de Tunisie. (Eds.) Association pour la protection de la nature et de l’environnement, Sfax, p 67

  • Delaquis P, Stanich K, Toivonen P (2005) Effect of pH on the inhibition of Listeria spp. by vanillin and vanillic acid. J Food Prot 68:1472–1476

    PubMed  CAS  Google Scholar 

  • Dewanto VX, Wu K, Adom K, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agricult Food Chem 50:3010–3014

    Article  CAS  Google Scholar 

  • Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N (2006) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 97:654–660

    Article  CAS  Google Scholar 

  • Duh PD, Tu YY, Yen GC (1999) Antioxidant activity of water extract of Harng jyur (Chrysanthemum morifolium Ramat). LWT 32:269–277

    Article  CAS  Google Scholar 

  • Falleh H, Ksouri R, Chaieb K, Karray-Bouraoui N, Trabelsi N, Boulaaba M, Abdelly C (2008) Phenolic composition of Cynara cardunculus L. organs, and their biological activities. C R Biol 33:1372–1379

    Google Scholar 

  • Graham DR, Dixon RE, Hughes JM, Thorns berry C (1985) Disk diffusion antimicrobial susceptibility testing for clinical and epidemiologic purposes. Am J Infect Control 13:241–249

    Article  PubMed  CAS  Google Scholar 

  • Gruz J, Ayaz FA, Torun H, Strnad M (2011) Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem 124:271–277

    Article  CAS  Google Scholar 

  • Gulluce M, Sahin F, Sokmen M, Ozer H, Daferera D, Sokmen A, Polissiou M, Adiguzel A, Ozkan H (2007) Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. Longifolia. Food Chem 103(4):1449–1456

    Article  CAS  Google Scholar 

  • Harborne JB (1995) Plant polyphenols and their role in plant defense mechanisms. In: Brouillard R, Jay M, Scalbert A (eds) Polyphenols 94. INRA, Paris, pp 19–26

    Google Scholar 

  • Hatano T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licorice root their relative astringency and radical scavenging effect. Chem Pharm Bull 36:2090–2097

    Article  PubMed  CAS  Google Scholar 

  • Karou D, Dicko MH, Simpore J, Traore AS (2005) Antioxidant and antimicrobial activities of polyphenols from ethnomedicinal plants of Burkina Faso. Afr J Biotechnol 4:823–828

    CAS  Google Scholar 

  • Katsube T, Imawaka N, Kawano Y, Yamazaki Y, Shiwaku K, Yamane Y (2006) Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity. Food Chem 97:25–31

    Article  CAS  Google Scholar 

  • Kim KH, Tsao R, Yang R, Cui SW (2006) Phenolic acid and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem 95:466–473

    Article  CAS  Google Scholar 

  • Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Bakrouf A, Magné C, Abdelly C (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47:2083–2091

    Article  PubMed  CAS  Google Scholar 

  • Macheix JJ, Fleuriet A, Jay-Allemand C (2005) Les composes phénoliques des végétaux, un exemple de métabolites secondaires d’importance économique, ed Presses Polytechniques et Universitaires Romandes., CH-1015 Lausanne

  • Mazza CA, Boccalandro HE, Giodano CV, Battista D, Scopel AL, Ballaré CL (2000) Functional significance ad induction by solar radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops. Plant Physiol 122:117–125

    Article  PubMed  CAS  Google Scholar 

  • Menzel U, Lieth H (1999) Halophyte database. In: Lieth H (ed) Halophyte uses in different climates II. Halophyte crop development for different climates, progress in biometeorology, vol 14. Backuys Publishers, Leiden, pp 127–133

    Google Scholar 

  • Oszmianski J, Wojdylo A, Lamer-Zarawska E, Swiader K (2007) Antioxidant tannins from Rosaceae plant roots. Food Chem 100:579–583

    Article  CAS  Google Scholar 

  • Ouchikh O, Chahed T, Ksouri R, Ben Taarit M, Faleh H, Abdelly C, Kchouk ME, Marzouk B (2011) The effects of extraction method on the measured tocopherol level and antioxidant activity of L. nobilis vegetative organs. J Food Comp Anal 24:103–110

    Article  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on products of the browning reaction: antioxidative activities of browning reaction. Jpn J Nutr 44(66):307–315

    Article  CAS  Google Scholar 

  • Proestos C, Boziaris IS, Nychas GJE, Komaitis M (2006) Analysis of flavonoids and phenolic acids in Greek aromatic plants: investigation of their antioxidant capacity and antimicrobial activity. Food Chem 95:664–671

    Article  CAS  Google Scholar 

  • Que F, Mao L, Pan X (2006) Antioxidant activities of five Chinese rice wines the involvement of phenolic compounds. Food Res Int 39:581–587

    Article  CAS  Google Scholar 

  • Rios JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez Vaquero MJ, Alberto MR, Manca de Nadra MC (2007) Antibacterial effect of phenolic compounds from different wines. Food Control 18:93–101

    Article  Google Scholar 

  • Rodríguez H, Landete JM, de las Rivas B, Munõz R (2008) Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T. Food Chem 107:1393–1398

    Article  Google Scholar 

  • Romani A, Ieri F, Turchetti B, Mulinacci N, Vincieri FF, Buzzini P (2006) Analysis of condensed and hydrolysable tannins from commercial plant extracts. J Pharm Biomed Anal 41:415–420

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Rodríguez E, Moreno DA, Ferreres F, Rubio-Wilhelmi MM, Ruiz JM (2011) Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes. Phytochem. doi:10.1016/.2011.02.011

  • Siddhuraju P, Becker K (2003) Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J Agricult Food Chem 51:2144–2155

    Article  CAS  Google Scholar 

  • Singh M, Govindarajan R, Nath V, Singh RAK, Mehrotra S (2006) Antimicrobial, wound healing and antioxidant activity of Plagiochasma appendiculatum Lehm et Lind. J Ethnopharmacol 107:67–72

    Article  PubMed  Google Scholar 

  • Stapleton AE, Walbot V (1994) Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiol 105:881–889

    Article  PubMed  CAS  Google Scholar 

  • Sun B, Richardo-da-Silvia JM, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agricult Food Chem 46:4267–4274

    Article  CAS  Google Scholar 

  • Trabelsi N, Megdiche W, Ksouri R, Falleh H, Oueslati S, Soumaya B, Hajlaoui H, Abdelly C (2010) Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT-Food Sci Technol 43:632–639

    Article  CAS  Google Scholar 

  • Varma RS, Shukla A, Chatterjee RK (1993) Evaluation of vanillic acid analogues as a new class of antifilarial agents. Indian J Exp Biol 31:819–821

    PubMed  CAS  Google Scholar 

  • Yamamoto N, Moon J-H, Tsushida T, Nagao A, Terao J (1999) Inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation in human low density lipoprotein. Arch Biochem Biophys 372:347–354

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Tunisian Ministry of Higher Education, Research and Technology (LR02CB02) and by the Tunisian-French ‘‘Comité Mixte de Coopération Universitaire” (CMCU) network # 08G0917.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najla Trabelsi.

Additional information

Communicated by Z.-L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trabelsi, N., Falleh, H., Jallali, I. et al. Variation of phenolic composition and biological activities in Limoniastrum monopetalum L. organs. Acta Physiol Plant 34, 87–96 (2012). https://doi.org/10.1007/s11738-011-0807-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0807-8

Keywords

Navigation