Skip to main content
Log in

Modification of chromium (VI) phytotoxicity by exogenous gibberellic acid application in Pisum sativum (L.) seedlings

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Effects of exogenous gibberellic acid (GA; 10 and 100 μM) application on growth, protein and nitrogen contents, ammonium (NH4 +) content, enzymes of nitrogen assimilation and antioxidant system in pea seedlings were investigated under chromium (VI) phytotoxicity (Cr VI; 50, 100 and 250 μM). Exposure of pea seedlings to Cr and 100 μM GA resulted in decreased seed germination, fresh and dry weight and length of root and shoot, and protein and nitrogen contents compared to control. Compared to control, Cr and 100 μM GA led to the significant alteration in nitrogen assimilation in pea. These treatments decreased root and shoot nitrate reductase (NR), glutamine synthetase (GS) and glutamine 2-oxoglutarate aminotransferase (GOGAT) activities (except 50 μM Cr alone for GOGAT) while glutamate dehydrogenase (GDH) activity and NH4 + content increased. Compared to control, the root and shoot activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased (except APX activity at 250 μM Cr + 100 μM GA) while catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase (DHAR) activities were decreased (except GR at 100 μM GA alone) following exposure of Cr and 100 μM GA. Total ascorbate and total glutathione in root and shoot decreased by the treatments of Cr and 100 μM GA while their levels were increased by the application of 10 μM GA compared to Cr treatments alone. It has been reported that application of 10 μM GA together with Cr alleviated inhibited levels of growth, nitrogen assimilation and antioxidant system compared to Cr treatments alone. This study showed that application of 10 μM GA counteracts some of the adverse effects of Cr phytotoxicity with the increased levels of antioxidants and sustained activities of enzymes of nitrogen assimilation; however, 100 μM GA showed apparently reverse effect under Cr phytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

DHAR:

Dehydroascorbate reductase

GDH:

Glutamate dehydrogenase

GOGAT:

Glutamine 2-oxoglutarate aminotransferase

GR:

Glutathione reductase

GS:

Glutamine synthetase

NR:

Nitrate reductase

SOD:

Superoxide dismutase

References

  • Aebi II (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Arditti J, Dunn A (1969) Environmental plant physiology—experiments in cellular and plant physiology. Holt, Rinehart and Winston Inc, New York

    Google Scholar 

  • Arrigoni O (1994) Ascorbate system in plant development. J Bioenerg Biomemb 26:407–419

    Article  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct Plant Biol 30:57–64

    Article  CAS  Google Scholar 

  • Balestrasse KB, Gallego SM, Tomaro ML (2006) Oxidation of the enzymes involved in ammonium assimilation plays an important role in the cadmium-induced toxicity in soybean plants. Plant Soil 284:187–194

    Article  CAS  Google Scholar 

  • Beevers L, Guernsey FS (1966) Changes in some nitrogenous components during the germination of pea seeds. Plant Physiol 41:1455–1458

    Article  PubMed  CAS  Google Scholar 

  • Brehe JE, Burch HB (1976) Enzymatic assay for glutathione. Anal Biochem 74:189–197

    Article  PubMed  CAS  Google Scholar 

  • Celik I, Tuluce Y, Isik I (2007) Evaluation of toxicity of abscisic acid and gibberellic acid in rats: 50 days drinking water study. J Enzym Inhib Med Chem 22:219–226

    Article  CAS  Google Scholar 

  • Chao YY, Hong CY, Kao CH (2010) The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Plant Physiol Biochem 48:374–381

    Article  PubMed  CAS  Google Scholar 

  • Cordoba-Pedregosa MC, Gonzalez-Reyes JA, Sanadillas MS, Navas P, Cordoba F (1996) Role of apoplastic and cell-wall peroxidases on the stimulation of root elongation by ascorbate. Plant Physiol 112:1119–1125

    PubMed  CAS  Google Scholar 

  • Corpas F, Palma JM, Sandalio LM, Lopez-Huertas E, Romero-Puertas MC, Barroso JB (1999) Purification of catalase from pea leaf peroxisomes: identification of five different isoforms. Free Rad Res 31:235–241

    Article  Google Scholar 

  • Debouba M, Gouia H, Suzuki A, Ghorbel MH (2006) NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato “Lycopersicon esculentum” seedlings. J Plant Physiol 163:1247–1258

    Article  PubMed  CAS  Google Scholar 

  • Fuchs Y, Lieberman M (1968) Effects of kinetin, IAA and gibberellin on ethylene production and their interactions in growth of seedlings. Plant Physiol 43:2029–2036

    Article  PubMed  CAS  Google Scholar 

  • Gajewska E, Sklodowska M (2009) Nickel-induced changes in nitrogen metabolism in wheat shoots. J Plant Physiol 166:1034–1044

    Article  PubMed  CAS  Google Scholar 

  • Giannopolitis CN, Reis SK (1977) Superoxide dismutase. I. occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed  CAS  Google Scholar 

  • Gossett DR, Millhollon EP, Cran LM (1994) Antioxidant response to NaCl stress in salt-sensitive cultivars of cotton. Crop Sci 34:706–714

    Article  CAS  Google Scholar 

  • Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124:1437–1448

    Article  PubMed  CAS  Google Scholar 

  • Hernández JA, Escobar C, Creissen G, Mullineaux PM (2004) Role of hydrogen peroxide and the redox state of ascorbate in the induction of antioxidant enzymes in pea leaves under excess light stress. Funct Plant Biol 31:359–368

    Article  Google Scholar 

  • Hooley R (1994) Gibberellins: perception, transduction responses. Plant Mol Biol 26:1529–1555

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Asada K (1984) Purification of dehydroascorbate reductase from spinach and its characterization as thiol enzyme. Plant Cell Physiol 25:85–92

    CAS  Google Scholar 

  • Kerk NM, Feldman LJ (1995) A biochemical model for initiation and maintenance of the quiescent center: implications for organization of root meristems. Plant Dev 121:2825–2833

    CAS  Google Scholar 

  • Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Joshi UN (2008) Nitrogen metabolism as affected by hexavalent chromium in sorghum (Sorghum bicolor L.). Environ Exp Bot 64:135–144

    Article  CAS  Google Scholar 

  • Lang CA (1958) Simple microdetermination of Kjeldahl nitrogen in biological materials. Anal Chem 30:1692–1694

    Article  CAS  Google Scholar 

  • Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and sulphate uptake in intact Canola. Plant Physiol 111:147–157

    PubMed  CAS  Google Scholar 

  • Lillo C (1984) Diurnal variations of nitrite reductase, glutamine synthetase, glutamate synthase, alanine amino transferase and aspartate amino transferase in barley leaves. Physiol Plant 61:214–218

    Article  CAS  Google Scholar 

  • Loulakakis KA, Roubelakis-Angelakis KA, Kanellis AK (1994) Regulation of glutamate dehydrogenase and glutamine synthetase in avocado fruit during development and ripening. Plant Physiol 106:217–222

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, Lelandias M, Grandjean J, Valadier MH, Feraud M, Jouglet T, Suzuki A (2006) Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink source nitrogen cycle in tobacco. Plant Physiol 140:444–456

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka M (2003) Gibberellin signaling: how do plant cells respond to GA signals? J Plant Growth Regul 22:123–125

    Article  CAS  Google Scholar 

  • Molins-Legua C, Meseguer-Lloret S, Moliner-Martinez Y, Campíns-Falcó P (2006) A guide for selecting the most appropriate method for ammonium determination in water analysis. Trends Anal Chem 25:282–290

    Article  CAS  Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. a signaling mechanism in polar growth, hormone transduction, stress signaling and hypothetically mechanotransduction. Plant Physiol 135:702–708

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Nouairi I, Ammar WB, Youssef NB, Miled DDB, Ghorbal MB, Zarrouk M (2009) Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiol Plant 31:237–247

    Article  CAS  Google Scholar 

  • Ogawa K, Soutome R, Hiroyama K, Hagio T, Ida S, Nakagawa H (2000) Co-regulation of nitrate reductase and nitrite reductase in cultured spinach cells. J Plant Physiol 157:299–306

    CAS  Google Scholar 

  • Panda SK (2007) Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J Plant Physiol 164:1419–1428

    Article  PubMed  CAS  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2009a) Chromium (VI) induced changes in growth and root plasma membrane redox activities in pea plants. Protoplasma 235:49–55

    Article  PubMed  CAS  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2009b) Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma 236:85–95

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas M, Palma JM, Gómez M, del Río LA (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  • Salin ML (1988) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72:681–689

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012

    Article  PubMed  CAS  Google Scholar 

  • Scheller HV, Huang B, Hatch E, Goldsbrough PB (1987) Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol 85:1031–1035

    Article  PubMed  CAS  Google Scholar 

  • Schiavon M, Pilon-Smits EAH, Wirtz M, Hell R, Malagoli M (2008) Interaction between chromium and sulfur metabolism in Brassica juncea. J Environ Qual 37:1536–1545

    Article  PubMed  CAS  Google Scholar 

  • Shan C, Liang Z (2010) Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci 178:130–139

    Article  CAS  Google Scholar 

  • Shanker AK, Djanaguiraman M, Sudhagar R, Chandrashekar CN, Pathmanabhan G (2004) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. Cv CO 4) roots. Plant Sci 166:1035–1043

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162:854–864

    Article  PubMed  CAS  Google Scholar 

  • Shen Z, Shen Q, Liang Y, Liu Y (1994) Effect of nitrogen on the growth and photosynthetic activity of salt-stressed barley. J Plant Nutr 17:787–789

    Article  CAS  Google Scholar 

  • Singh RP, Srivastava HS (1983) Regulation of glutamate dehydrogenase activity by amino acids in maize seedlings. Physiol Plant 57:549–554

    Article  CAS  Google Scholar 

  • Singh RP, Srivastava HS (1986) Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen. Physiol Plant 66:413–416

    Article  CAS  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767–2781

    Article  PubMed  CAS  Google Scholar 

  • Solomonson LP, Barber MJ (1990) Assimilatory nitrate reductase; functional properties and regulation. Annu Rev Plant Physiol Plant Mol Biol 41:225–253

    Article  CAS  Google Scholar 

  • Srivastava HS, Singh RP (1987) Role and regulation of l-glutamate dehydrogenase during defence response in maize. Phytochemistry 26:597–610

    Article  CAS  Google Scholar 

  • Syntichaki KM, Loulakakis KA, Roubelaki-Angelakis KA (1996) The amino acid sequence similarity of plant glutamate dehydrogenase to the extremophilic archaeal enzyme conforms to its stress-related function. Gene 168:87–92

    Article  PubMed  CAS  Google Scholar 

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62:1–9

    Article  CAS  Google Scholar 

  • Vazques MD, Poschenrieder C, Barcelo J (1987) Chromium VI induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris L.). Ann Bot (Lond) 59:427–438

    Google Scholar 

  • Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575

    Article  PubMed  CAS  Google Scholar 

  • Wallace A, Soufi SM, Cha JW, Romney EM (1976) Some effects of chromium toxicity on bush bean plants grown in soil. Plant Soil 44:471–473

    Article  CAS  Google Scholar 

  • Wen F, Zhang Z, Bai T, Xu Q, Pan Y (2010) Proteomics reveals the effects of gibberellic acid (GA3) on salt-stressed rice (Oryza sativa L.) shoots. Plant Sci 178:170–175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank The Head, Department of Plant Science, MJP Rohilkhand University, Bareilly, India for providing necessary laboratory facilities to carry out this work. We are also thankful to UGC, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savita Gangwar.

Additional information

Communicated by G. Klobus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangwar, S., Singh, V.P., Srivastava, P.K. et al. Modification of chromium (VI) phytotoxicity by exogenous gibberellic acid application in Pisum sativum (L.) seedlings. Acta Physiol Plant 33, 1385–1397 (2011). https://doi.org/10.1007/s11738-010-0672-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0672-x

Keywords

Navigation