Skip to main content

Advertisement

Log in

Seed vigour-related DNA marker in rice shows homology with acetyl CoA carboxylase gene

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Germination potential, i.e. vigour manifested at sensu stricto germination, was studied in 22 rice varieties to distinguish between the genetic control for low vigour (lv) at fresh harvest and lv after ageing of seeds. For identifying seed vigour-associated DNA marker(s), correlative studies between (1) physiological parameters viz. germination of (a) unaged seeds under optimum and cold stressed condition, (b) aged seeds under optimal condition and (2) growth-associated biochemical parameters viz. alcohol dehydrogenase (ADH) and esterase (EST) activity during early germination of fresh seeds and antioxidant potential in dry embryos of fresh and aged (1 year) seeds were undertaken. ADH and EST activity as well as antioxidant potential showed positive correlation with speed of embryo emergence and early seedling growth of seeds. The reduction of antioxidant potential in aged seeds also appeared proportional to germination performance. Random amplified polymorphic DNA analysis between the varieties was correlated with the above-mentioned vigour parameters, using multiple regression analysis. This led to the identification of four bands associated with the vigour trait at 99% significance level; of these, the ~ 900-bp DNA fragment (named as HVAC 19), through basic local alignment search tool nucleotides analysis, revealed a sequence homology with acetyl CoA carboxylase (ACCase) gene of wheat at 94% similarity level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADH:

Alcohol dehydrogenase (EC 1.1.1.1)

ANOVA:

Analysis of variance

AOSA:

Association of official seed analysis

β-ME:

β-Mercaptoethanol

BLASTN:

Basic local alignment search tool nucleotides

DPPH:

2,2′-Diphenyl-1-1-pycrylhydrazyl

DTT:

Dithiothretol

EDTA:

Ethylene diamine tetraacetic acid

EST:

Esterase (EC 3.1.1.1)

EtBr:

Ethidium bromide

hv:

High vigour

ISTA:

International seed testing association

lv:

Low vigour

MAS:

Marker assistance selection

MTT:

3[4,5-Dimethyl-thiazolyl-2]-2,5-diphenyltetrazolium bromide

NA:

Natural ageing

NAD:

Nicotinamide adenine dinucleotide

PMS:

Phenazoniummethosulphate

PVP:

Polyvinylpyrrolidone

QTL:

Quantitative trait loci

ROS:

Reactive oxygen species

TRIS:

Tris(hudroxymethyl) aminomethane

RE:

Restriction enzymes

References

  • Altschul SF, Warren G, Webb M, Eugene WM, David JL (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Amic D, Davidovic-Amic D, Beslo D, Trinajstic N (2003) Structure-radical scavenging activity relationships of flavonoids. Croat Chem Acta 76:55–61

    CAS  Google Scholar 

  • Anon (2002) Seed vigor testing handbook. Association of Official Seed Analysts, Las Cruces

  • Association of Official Seed Analysis (AOSA) (1990) Rules for testing seeds. J Seed Technol 12:1–112

    Google Scholar 

  • Bailly C, Benamar A, Corbineau F, Come D (1998) Free radical scavenging as affected by accelerated ageing and subsequent priming in sunflower seeds. Physiol Plant 104:646–652. doi:10.1034/j.1399-3054.1998.1040418.x

    Article  CAS  Google Scholar 

  • Balesevic-Tubic S, Malencic D, Tatic M, Miladinovic J (2005) Influence of ageing process on biochemical changes in sunflower seed. Helia 28(42):107–114. doi:10.2298/HEL0542107B

    Article  Google Scholar 

  • Bentsink L, Alonso-Blanco C, Vreugdenhil D, Tesnier K, Groot SPC, Koornnef M (2000) Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol 124:1595–1604. doi:10.1104/pp.124.4.1595

    Article  PubMed  CAS  Google Scholar 

  • Bettey M, Finch-Savage WE (1998) Stress protein content of mature Brassica seeds and their germination performance. Seed Sci Res 8:347–355. doi:10.1017/S096025850000427X

    Article  CAS  Google Scholar 

  • Bettey M, Finch-Savage WE, King GJ, Lynn JR (2000) Quantitative genetic analysis of seed vigor and pre-emergence seedling growth traits in Brassica oleracea. New Phytol 148:277–286. doi:10.1046/j.1469-8137.2000.00760.x

    Article  Google Scholar 

  • Biswas S (1973) Varietal differences in the seed viability period of rice seeds during storage. Indian Agric 17(1):143–146

    Google Scholar 

  • Blowers LE, David AS, Bray CM (1980) Nucleic acid and protein synthesis and loss of vigour in germinating wheat embryos. Planta 150:19–25. doi:10.1007/BF00385609

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Chang TT (1978) Differential seed longevity of rice cultivars held in cold storage. Agronomy Abstracts. American Society of Agronomy, Madison, p 109

    Google Scholar 

  • Chang TT, Tolentino VT (1983) Seed longevity of three rice cultivars in three packing materials under six storage conditions. Agronomy Abstracts. American Society of Agronomy, Madison, p 118

    Google Scholar 

  • Chloupek O, Hrstkova P, Jurecka D (2003) Tolerance of barley seed germination to cold and drought-stress expressed as seed vigour. Plant Breed 122(3):199–203. doi:10.1046/j.1439-0523.2003.00800.x

    Article  Google Scholar 

  • Copeland LO, McDonald MB (2001) Principles of seed science and technology, 4th edn. Kluwer Academic Publishers, Norwell, p 467

    Google Scholar 

  • De la Fuente B, Nicolas G (1974) Respiratory activity during germination of seeds of Cicer arietinum L. glycolysis and fermentation. Plant Sci Lett 3:143–148. doi:10.1016/0304-4211(74)90114-X

    Article  Google Scholar 

  • Duffus JH (1968) Alcoholic dehydrogenase in the barley embryo. Phytochemistry 7:1135–1137. doi:10.1016/S0031-9422(00)88259-X

    Article  CAS  Google Scholar 

  • Emile JM, Clerk X, Mohamed E, EL-Lithy ElizabethV, Gerda JR, Hetty B-DV, Steven PCG, Dick V, Maarten K (2004) Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits hot water using a new recombinant inbred line population. Plant Physiol 135:432–443. doi:10.1104/pp.103.036814

    Article  Google Scholar 

  • Figueroa-Balderas RE, Garcia-Ponce B, Rocha-Sosa M (2006) Hormonal and stress induction of the gene encoding common bean acetyl-coenzyme a carboxylase. Plant Physiol 142:609–619. doi:10.1104/pp.106.085597

    Article  PubMed  CAS  Google Scholar 

  • Finch-Savage WE (1995) Influence of seed quality on crop establishment, growth and yield. In: Basra AS (ed) Seed quality: basic mechanisms and agricultural implication. Food Products Press, New York, pp 361–384

    Google Scholar 

  • Fukuoka S, Hosaka K, Kamijima O (1992) Use of random amplified polymorphic DNAs (RAPDs) for identification of rice accessions. Jpn J Genet 67:243–252. doi:10.1266/jjg.67.243

    Article  CAS  Google Scholar 

  • Gornicki P, Podkowinski J, Scappino LA, Dimaio J, Ward E, Haselkorn R (1994) Wheat acetyle-coenzyme a carboxylase: cDNA and protein structure. Proc Natl Acad Sci USA 91:6860–6864. doi:10.1073/pnas.91.15.6860

    Article  PubMed  CAS  Google Scholar 

  • Ho DTH, Scandalios J (1975) Regulation of alcohol dehydrogenase in maize scutalum during germination. Plant Physiol 56:56–59. doi:10.1104/pp.56.1.56

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin T, Hegarty TW (1978) Genetically determined variation in seed germination and field emergence of Brassica oleracea. Ann Appl Biol 88:407–413. doi:10.1111/j.1744-7348.1978.tb00732.x

    Article  Google Scholar 

  • Kabaki N, Yoneyama T, Tajima K (1982) Physiological mechanism of growth retardation in rice seedlings as affected by low temperature. Jpn J Crop Sci 51:82–88

    CAS  Google Scholar 

  • Kamalay JC, Tejwari R, Rufener GK II (1990) Isolation and analysis of genomic DNA from single seed. Crop Sci 30:1079–1084

    CAS  Google Scholar 

  • Kennedy RA, Rumpho ME, Fox TC (1992) Anaerobic metabolism in plants. Plant Physiol 100:1–6. doi:10.1104/pp.100.1.1

    Article  PubMed  CAS  Google Scholar 

  • Keswani CL, Upadhya MD (1969) Isoenzyme changes during seed germination of Saguaro cactus (Carnegiea gigantea). Physiol Plant 22(2):386–391. doi:10.1111/j.1399-3054.1969.tb07390.x

    Article  CAS  Google Scholar 

  • Kollofel C (1968) Activity of alcohol dehydrogenase in the cotyledons of peas germinated under different environmental conditions. Acta Bot Neerl 17:70–77

    Google Scholar 

  • Landry LG, Chapple CCS, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:1159–1166. doi:10.1104/pp.109.4.1159

    Article  PubMed  CAS  Google Scholar 

  • Lepiniec L, Dedbeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of flavoids. Annu Rev Plant Physiol 57:405–430

    CAS  Google Scholar 

  • Li CC, Rutger JN (1980) Inheritance of cool temperature seedling vigour in rice and its relationship with agronomic characters. Crop Sci 20:295–298

    Google Scholar 

  • Li X, Ralphs MH, Garner DR, Wang RRC (2002) Genetic variation within and among 22 accessions of three tall larkspur species (Delphinium spp.) base on RAPD markers. Biochem Syst Ecol 30:91–102

    Article  CAS  Google Scholar 

  • Liu X, Xing D, Li L, Zhang L (2007) Rapid deterioration of seed vigor based on the level of superoxide generation during early imbibition. Photochem Photobiol Sci 6:767–774. doi:10.1039/b704337f

    Article  PubMed  CAS  Google Scholar 

  • Lois R, Buchanan BB (1994) Severe sensitivity to ultraviolet radiation in an Arabidopsis mutant deficient in flavonoid accumulation. Planta 194:504–509. doi:10.1007/BF00714463

    Article  Google Scholar 

  • Mackill DJ (1995) Classifying japonica rice cultivars with RAPD markers. Crop Sci 35:889–894

    CAS  Google Scholar 

  • Macko V, Honold GR, Stahmann MA (1967) Soluble protein and multiple enzyme forms in early growth of wheat. Phytochemistry 6:465–471. doi:10.1016/S0031-9422(00)82907-6

    Article  CAS  Google Scholar 

  • Mehta A, Ali A (1996) Polymorphism and genes expression of esterase and acid phosphatase isozymes at different developmental stages in Lens culinaris medikus. Indian J Plant Gen Resour 9:135–141

    Google Scholar 

  • Mishra RK, Sen-Mandi S (2004) Molecular profiling and development of DNA marker associated with drought tolerance in tea clones growing in Darjeeling. Curr Sci 87(1):60–66

    CAS  Google Scholar 

  • Murthy UMN, Liang Y, Kumar PP, Sun WQ (2002) Non-enzymatic protein modification by the Maillard reaction reduces the activities of scavenging enzymes in Vigna radiate. Physiol Plant 115:213–220. doi:10.1034/j.1399-3054.2002.1150206.x

    Article  PubMed  CAS  Google Scholar 

  • Nandi S, Das G, Sen-Mandi S (1996) Biochemical response cold acclimatization in rice seeds. Plant Physiol Biochem 23(2):199–204

    Google Scholar 

  • Nandi S, Sen-Mandi S, Sinha TP (1997) Active oxygen and their scavengers in rice seeds (Oryza sativa cv. IET4094) aged under tropical environmental conditions. Seed Sci Res 7:253–259. doi:10.1017/S0960258500003603

    Article  CAS  Google Scholar 

  • Nkongolo KK, Michael P, Gratton WS (2002) Identification and characterization of RAPD markers inferring genetic relationship among pine species. Genome 45:51–58. doi:10.1139/g01-121

    Article  PubMed  CAS  Google Scholar 

  • Ogunbayo SA, Ojo DK, Guei RG, Oyelakin OO, Sanni KA (2005) Phylogenetic diversity and relationships among 40 rice accessions using morphological and RAPD techniques. Afr J Biotechnol 4(11):1234–1244

    CAS  Google Scholar 

  • Osborne DJ (1980) Senescence in seeds. In: Thimann KV (ed) Senescence in plant. CRC, Boca Raton, pp 13–33

    Google Scholar 

  • Osborne DJ, Dell’Aquila A, Elder RH (1984) DNA repair in plant cells. An essential event of early embryo germination in seeds. Folia Biol (Praha) 30:155–169 (Special Publication)

    Google Scholar 

  • Payne RC, Koszykowski TJ (1978) Esterase isozyme differences in seed extracts among soybean cultivars. Crop Sci 18:557–559

    Article  CAS  Google Scholar 

  • Pereira da Cruz R, Sandra Milach CK, Federizzi LC (2006) Inheritance of rice cold tolerance at the germination stage. Genet Mol Biol 29(2):314–320

    CAS  Google Scholar 

  • Perry DA (1978) Report of the vigour test committee 1974–1977. Seed Sci Technol 6:159–596

    Google Scholar 

  • Pesis E, Ng TJ (1984) The role of anaerobic respiration in germinating muskmelon seed. J Exp Bot 35(152):357–365

    Google Scholar 

  • Peterson ML, Jones DB, Rutger JN (1978) Cool temperature screening of rice lines for seedling vigor. Il Riso 27:269–274

    Google Scholar 

  • Post-Beittenmiller D, Ohlrogge JB, Jaworski JG (1993) Regulation of plant lipid biosynthesis: an example of developmental regulation superimposed on a ubiquitous pathway. In: Verma DPS (ed) Control of plant gene expression. CRC, Boca Raton, pp 157–174

    Google Scholar 

  • Pramanik S, Sen Raychaudhuri S, Chakraborty S (1996) Changes in esterase and superoxide dismutase isozymes during in vitro morphogenesis in Plantago ovata Forssk. Plant Cell Tissue Organ Cult 44:123–127

    Article  CAS  Google Scholar 

  • Priestley DA (1986) Seed aging. Implications of seed storage and persistence in the soil. Cornell University Press, Ithaca

    Google Scholar 

  • Pukacka S, Ratajczak E (2007) Age-related biochemical changes during storage of beech (Fagus sylvatica L.) seeds. Seed Sci Res 17:45–53. doi:10.1017/S0960258507629432

    Article  CAS  Google Scholar 

  • Redona ED, Mackill DJ (1996) Mapping quantitative trait loci for seedling vigour in rice using RFLPs. Theor Appl Genet 92:395–402. doi:10.1007/BF00223685

    Article  CAS  Google Scholar 

  • Ribeiro AB, Silva DHS, Bolzani VDS (2002) Antioxidant flavonol glycosides from Nectandra grandiflora (Lauraceae). Eclet Quim 27:35–44. Special Sao Paulo (ISSN 0100-4670 versao impressa)

  • Riccard B, Miquot B, Fournir A, Delseny M, Pradet A (1986) Expression of alcohol dehydrogenase in rice embryoes under anoxia. Plant Mol Biol 7:321–329. doi:10.1007/BF00032562

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sasaki Y, Nagano Y (2004) Plant acetyl CoA carboxylase: structure, biosynthesis, regulation and gene manipulation for plant breeding. Biosci Biotechnol Biochem 68(6):1175–1184. doi:10.1271/bbb.68.1175

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Osborne DJ (1977) Decline in ribonucleic acid and protein synthesis with loss of viability of rye (Secale cereale L) embryos. Biochem J 166:33–38

    PubMed  CAS  Google Scholar 

  • Sen-Mandi S, Bhattacharya S (2003) Varietal difference in cellular damage associated with ageing in dry stored seed. Indian J Plant Physiol 210–216 (Special Issue)

  • Sen-Mandi S, Bhattacharya S, Talai S (2004) Functional genomics of rice seed storability: a gene mediated positive effect of spontaneous UV radiation. Abstract of 3rd plant European genomics meeting P-073, 22nd–25th September, Lyon

  • Seshu DV (1990) Manifestation of seed vigor in rice and its implication for sustainable farming. Paper presented at the international symposium on rice research, New Frontiers, 15th–18th November, Hyderabad

  • Shimomura S, Beevers H (1983) Alcohol dehydrogenase and inactivator from rice seedling. Plant Physiol 71:736–741. doi:10.1104/pp.71.4.736

    Article  PubMed  CAS  Google Scholar 

  • Shirley BW (1998) Flavonoids in seeds and grains: physiological function, agronomic importance and the genetics of biosynthesis. Seed Sci Res 8:415–422

    Article  CAS  Google Scholar 

  • Siddique SB, Seshu DV, Pardee WD (1988) Rice cultivar viability in tolerance for ageing of seed. IRRI Res Paper Ser 131:1–7

    Google Scholar 

  • Singh VP, Gupta JG (1978) Electrophoretic variations in Brassica with respect to esterase isozyme patterns. J Indian Bot Soc 57:146–151

    CAS  Google Scholar 

  • Sinniah UR, Ellis RH, John P (1998) Irrigation and seed quality development in rapid-cycling Brassica: seed germination and longevity. Ann Bot (Lond) 82:309–314. doi:10.1006/anbo.1998.0748

    Article  Google Scholar 

  • Subramanian V, Gurtu S, Rao RCN, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43:656–660. doi:10.1139/gen-43-4-656

    Article  PubMed  CAS  Google Scholar 

  • Sung FJM, Chen JJ (1988) Tetrazolium test for predicting the seedling vigor of rice at optimal and suboptimal temperatures. Crop Sci 28:1012–1014

    Article  Google Scholar 

  • Suzuki Y, Kyuwa K (1972) Activation and inactivation of alcohol dehydrogenase in germinating pea cotyledons. Physiol Plant 27:121–124. doi:10.1111/j.1399-3054.1972.tb03587.x

    Article  CAS  Google Scholar 

  • Tesnier K, Strookman-Donkers HM, Van Pijlen JG, Van Der Geest AHM, Bino RJ, Groot SPC (2002) A controlled deterioration test of Arabidopsis thaliana reveals genetic variation in seed quality. Seed Sci Technol 30:149–165

    Google Scholar 

  • Thaker VS, Saroop S, Vaishnav PP, Singh YD (1986) Role peroxidase and esterase activity during cotton fibre development. J Plant Growth Regul 5:17–27. doi:10.1007/BF02027383

    Article  CAS  Google Scholar 

  • Thorman CE, Osborn TC (1992) Use of RAPD and RFLP markers for germplasm evaluation. In: Application of RAPD technology to plant breeding. Proceedings of the joint plant breeding symposia series, 1992. Minneapolis, pp 9–11

  • Thormann CE, Ferreira ME, Camargo LEA, Tivang JG, Osborn TC (1994) Comparison of RFLP and RAPD markers for estimating genetic relationships within and among cruciferous species. Theor Appl Genet 88:973–980. doi:10.1007/BF00220804

    Article  Google Scholar 

  • Torres M, De Paula M, Perez-Otaola M, Darder M, Frutos G, Martinez-Honduvilla CJ (1997) Ageing-induced changes in glutathione system of sunflower seeds. Physiol Plant 101:807–814. doi:10.1111/j.1399-3054.1997.tb01067.x

    Article  CAS  Google Scholar 

  • Urs YSV, Goud JV (1969) A preliminary note on seed dormancy in different varieties of rice. Mysore J Agric Sci 3:119–122

    Google Scholar 

  • Villiers TA, Edgcumbe DJ (1975) On the causes of seed deterioration in dry storage. Seed Sci Technol 3:761–774

    Google Scholar 

  • Virk PS, Ford-Lloyd BV, Jackson MT, Newbury HJ (1995) Use of RAPD for the study of diversity within plant germplasm collection. Heredity 74:170–179. doi:10.1038/hdy.1995.25

    Article  PubMed  CAS  Google Scholar 

  • Virk PS, Ford-Lloyd BV, Jackson MT, Pooni HS, Clemeno TP, Newbury HJ (1996) Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76:296–304. doi:10.1038/hdy.1996.43

    Article  Google Scholar 

  • Vrinda ST, Saroop S, Vaishnav PP, Singh YD (1986) Role of peroxidase and esterase activity during cotton fiber development. J Plant Growth Regul 5:17–27. doi:10.1007/BF02027383

    Article  Google Scholar 

  • Walbot V (1988) Preparation of DNA from single rice seedling. Rice Genet Newsl 5:149–157

    Google Scholar 

  • Whittington WJ (1973) Genetic regulation of germination. In: Heydecker W (ed) Seed ecology. Butterworths, London, pp 5–30

    Google Scholar 

  • Yamasaki H, Sakihama Y, Ikehara N (1997) Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol 115:1405–1412

    PubMed  CAS  Google Scholar 

  • Yamauchi M, Aguilar AM, Vaughan DA, Seshu DV (1993) Rice germplasm suitable for direct sowing under flooded soil surface. Euphytica 67:177–184. doi:10.1007/BF00040619

    Article  Google Scholar 

  • Yoshida S (1981) Climatic environment and its influence In: Yoshida S (ed) Fundamentals of rice crop science. IRRI, Los Banos, pp 348–359

    Google Scholar 

  • Zhang ZH, Qu XS, Wan S, Chen LH, Zhu YG (2005) Comparison of QTL controlling seedling vigour under different temperature conditions using recombinant inbred lines in rice (Oryza sativa). Ann Bot (Lond) 95(3):423–429. doi:10.1093/aob/mci039

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Chinsurah Research Station, West Bengal, India and Directorate of Rice Research Station, Hyderabad, India, for providing seed material that was grown for seed production at Bose Institute Experimental farm. One of us (Ms. S. Talai) gratefully acknowledges Director, Bose Institute, for allowing the use of facilities at Bose Institute as an honorary fellow and Principal, Hari Mohan Ghose College for providing study leave for conducting part of this research. We thank Mrs Kaberi Ghosh for helping in sending the manuscript online.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Sen-Mandi.

Additional information

Communicated by F. Corbineau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talai, S., Sen-Mandi, S. Seed vigour-related DNA marker in rice shows homology with acetyl CoA carboxylase gene. Acta Physiol Plant 32, 153–167 (2010). https://doi.org/10.1007/s11738-009-0392-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0392-2

Keywords

Navigation