Skip to main content
Log in

Impact of hypoxia on the growth and alkaloid accumulation in Catharanthus roseus cell suspension

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The Madagascar periwinkle (Catharanthus roseus) produces numerous indole alkaloids, several of which have an important pharmaceutical uses such as ajmalicine, vinblastine and vincristine. The relationship between hypoxia and ajmalicine production in a cell suspension culture of C. roseus were investigated during the cycle of cell culture, in correlation with the effects on growth. The results show that the lack of oxygenation in C20D cells provokes a very strong inhibition in accumulation of the alkaloids and of other possible substances. Moreover, the addition of loganin, a metabolic intermediate of the biosynthetic pathway, in the culture medium of cells subjected to hypoxia restored the alkaloid production. Also, the results showed that the addition of benzyladenine (BA) to the culture medium increased the ajmalicine production and that the inhibitory effect of hypoxia was almost absent in these conditions. Therefore, it could be suggested that BA can without doubt decrease the effects of the hypoxia and increase the ajmalicine production in periwinkle cell suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Log:

Loganin

BA:

Benzyladenine

2,4-D:

2,4-Dichlorophenoxyacetic acid

Hyp:

Hypoxia

FM:

Fresh mass

DM:

Dry mass

C:

Control

Ajm:

Ajmalicine

D:

Day

TLC:

Thin layer chromatography

References

  • Decendit A, Liu D, Ouelhazi L, Doireau P, Merillon JM, Rideau M (1992) Cytokinin enhanced accumulation of indole alkaloids in Catharanthus roseus cell cultures. The factors affecting the cytokinin response. Plant Cell Rep 11:400–403

    Article  CAS  Google Scholar 

  • De Luca V, Balsevich J, Tyler RT, Eilert U, Panchuk BD, Kurz WG (1986) Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus. J Plant Physiol 125:147–156

    Google Scholar 

  • Droual AM, Maroufi H, Creche J, Chenieux JC, Rideau M, Hamdi S (1997) Changes in the accumulation of cytosolic cyclophilin transcripts in cultured periwinkle cells following hormonal and stress treatments. J Plant Physiol 151:142–150

    CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Giglioli-Guivarch’ N, Courdavault V, Oudin A, Crèche J, St-Pierre B (2006) Madagascar periwinkle, an attractive model for studying the control of the biosynthesis of terpenoid derivative compounds. In: Jaime A Teixeira da Silva (eds) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol II, 1st edn. Global Science Books, Ltd, Japan, pp 496–506

  • Meehan TD, Coscia CJ (1973) Hydroxylation of geraniol and nerol by a monoxygenase from Vinca rosea. Biochem Biophys Res Commun 53:1043–1048

    Article  PubMed  CAS  Google Scholar 

  • Mérillon JM, Chenieux JC, Rideau M (1982) Time course of growth, evolution of sugar-nitrogen metabolism and accumulation of alkaloids in a cell suspension of Catharanthus roseus. Planta Med 47:169–176

    Article  Google Scholar 

  • Ostrovsky D, Kharatian E, Lysak E, Shipanova I, Sibeldina L (1995) Heat treatment of Corynebacterium ammoniagenes leads to aeration dependent accumulation of 2C-methyl-d-erythritol-2,4-cyclopyrophosphate. Biofactors 5:1–4

    PubMed  CAS  Google Scholar 

  • Ostrovsky D, Diomina G, Lysak E, Matveeva E, Ogrel O, Trutko S (1998) Effect of oxidative stress on the biosynthesis of 2C-methyl-d-erythritol-2,4-cyclopyrophosphate. Arch Microbiol 171:69–72

    Article  PubMed  CAS  Google Scholar 

  • Oudin A, Hamdi S, Ouelhazi L, Chenieux JC, Rideau M, Clastre M (1999) Induction of a novel cytochrome P450 (CYP 96 family) in periwinkle (Catharanthus roseus) cells induced for terpenoid indole alkaloid production. Plant Sci 149:105–113

    Article  CAS  Google Scholar 

  • Papon N, Clastre M, Gantet P, Rideau M, Chénieux JC, Crèche J (2003) Inhibition of the plant cytokinin transduction pathway by bacterial histidine kinase inhibitors in Catharanthus roseus cell cultures. FEBS Lett 537:101–105

    Article  PubMed  CAS  Google Scholar 

  • Papon N, Bremer J, Vansiri A, Andreu F, Rideau M, Crèche J (2005) Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells. Planta Med 71:572–574

    Article  PubMed  CAS  Google Scholar 

  • Peebles AMC, Hong SB, Gibson SI, Shanks JV, San KY (2006) Effects of terpenoid precursor feeding on Catharanthus roseus hairy roots over-expressing the alpha or the alpha and beta subunits of anthranilate synthase. Biotechnol Bioeng 93:534–540

    Article  PubMed  CAS  Google Scholar 

  • Schlatmann JE, Moreno PRH, Vinke JL, Ten Hoopen HJG, Verpoorte R, Heijnen JJ (1994) Effect of oxygen and nutrient limitation on ajmalicine production and related enzyme activities in high density cultures of Catharanthus roseus. Biotechnol Bioeng 44:461–468

    Article  PubMed  CAS  Google Scholar 

  • Schlatmann JE, Vinke JL, Ten Hoopen HJG, Heijnen JJ (1995) Relation between dissolved oxygen concentration and ajmalicine production Rate in high-density cultures of Catharanthus roseus. Biotechnol Bioeng 45:435–439

    Article  PubMed  CAS  Google Scholar 

  • Van Der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 5:607–628

    Article  Google Scholar 

  • Zarate R, Verpoorte R (2007) Strategies for the genetic modification of the medicinal plant Catharanthus roseus (L.) G. Don. Phytochem Rev 6:475–491

    Article  CAS  Google Scholar 

  • Zhao X, Tang Z, Guo X, Zu Y, Jiao Y, Sun Y, Yang L (2006) Determination of three endogenous hormones in Catharanthus roseus (L.) G. Don using solid-phase extraction and high performance liquid chromatography. Se pu 24:534

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Mourad Senoussi.

Additional information

Communicated by E. Lojkowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senoussi, M.M., Nora, B. & Joêl, C. Impact of hypoxia on the growth and alkaloid accumulation in Catharanthus roseus cell suspension. Acta Physiol Plant 31, 359–362 (2009). https://doi.org/10.1007/s11738-008-0242-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-008-0242-7

Keywords

Navigation