Skip to main content
Log in

Caspase-like proteases and their role in programmed cell death in plants

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The investigations performed over recent few years have proved the existence of caspase-like proteases in plants. Three groups of caspase-like proteases: metacaspases, legumain family proteases (VPEs) and saspases have been identified and characterized in plants so far. A considerable amount of evidence supports the role of these enzymes in programmed cell death (PCD) occurring during plant development, their organ senescence as well as hypersensitive response (HR) after pathogen attack. Current knowledge of these enzyme molecular and biochemical structures is summarized in the paper. The homology of caspase-like proteases to animal caspases has been also indicated. Some future perspectives of research concerning the signal pathway during PCD, the regulation of activity and mode of action of these proteases are presented in the article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aravind L, Dixit VM, Koonin EV (1999) The domains of death: evolution of the apoptosis machinery. Trends Biochem Sci 24:47–53

    Article  PubMed  CAS  Google Scholar 

  • Balk J, Chew SK, Leaver Ch, McCabe P (2003) The intermembrane space of plant mitochondria contains a DNase activity that may be involved in programmed cell death. Plant J 34:573–583

    Article  PubMed  CAS  Google Scholar 

  • Belenghi B, Salomon M, Levine A (2004) Caspase-like activity in the seedlings of Pisum sativum eliminates weaker shoots during early vegetative development by induction of cell death. J Exp Bot 55:889–897

    Article  PubMed  CAS  Google Scholar 

  • Belenghi B, Romero-Puertas M, Vercammen D, Brackenier A, Inzé D, Delledonne M, van Breusegem F (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282:1352–1358

    Article  PubMed  CAS  Google Scholar 

  • Boren M, Höglund AS, Bozhkov P, Jansson C (2006) Developmental regulation of VEIDase caspase-like proteolytic activity in barley caryopsis. J Exp Bot 57:3747–3753

    Article  PubMed  CAS  Google Scholar 

  • Bozhkov PV, Filonova LH, Suarez MF, Helmersson A, Smertenko AP, Zhivotovsky B, von Arnold S (2004) VEIDase is a principal caspase like activity involved in plant programmed cell death and essential for embryonic pattern formation. Cell Death Differ 11:175–182

    Article  PubMed  CAS  Google Scholar 

  • Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AA, Rodriguez-Nieto S, Zhivotovsky B, Smertenko A (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Plant Biol 102:14463–14468

    CAS  Google Scholar 

  • Chichkova NV, Kim SH, Titova ES, Kalkum M, Morozom VS, Rubtsov YP, Kalinina NO, Taliansky ME, Vartapetian AB (2004) A plant caspase like protease activated during the hypersensitive response. Plant Cell 16:157–171

    Article  PubMed  CAS  Google Scholar 

  • Coffeen WC, Wolpert TJ (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857–873

    Article  PubMed  CAS  Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    PubMed  CAS  Google Scholar 

  • Collazo C, Chacon O, Borras O (2006) Programmed cell death in plants resembles apoptosis of animals. Biotechnol Aplic 23:1–10

    Google Scholar 

  • Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P (2004) Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and defender against apoptotic death. J Biol Chem 279:779–787

    Article  PubMed  CAS  Google Scholar 

  • De Jong AJ, Hoeberichts FA, Yakimova ET, Maximova E, Woltering EJ (2000) Chemical-induced apoptotic cell death in tomato cells: involvement of caspase-like proteases. Planta 211:656–662

    Article  PubMed  Google Scholar 

  • Del Pozo O, Lam E (2003) Expression of the baculovirus p35 protein in tobacco affects cell death progression and compromises N gene mediated disease resistance response to tobacco mosaic virus. Mol Plant Microbe Interact 16:485–494

    Article  PubMed  Google Scholar 

  • van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10:117–122

    PubMed  Google Scholar 

  • Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Ann Rev Biochem 68:383–424

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiol 6:201–211

    Article  PubMed  CAS  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858

    Article  PubMed  CAS  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Nishimura M, Hara-Nishimura I (2006) A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis 11:905–911

    Article  PubMed  CAS  Google Scholar 

  • He X, Kermode AR (2003) Proteases associated with programmed cell death of megagametophyte cells after germination of white spruce (Picea glauca) seeds. Plant Mol Biol 52:729–744

    Article  PubMed  CAS  Google Scholar 

  • Hiraiwa N, Nishimura M, Hara-Nishimura I (1999) Vacuolar processing enzyme is self-catalytically activated by sequential removal of the C-terminal and N-terminal propeptides. FEBS Lett 447:213–216

    Article  PubMed  CAS  Google Scholar 

  • Hoeberichts FA, ten Have A, Woltering EJ (2003) A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta 217:517–522

    Article  PubMed  CAS  Google Scholar 

  • Iakimova E, Atanassov A, Woltering E (2005) Chemical- and pathogen-induced programmed cell death in plants. Biotechnol Biotechnol Equip 19:124–138

    CAS  Google Scholar 

  • Jones A (2000) Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci 5:225–230

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann SH, Hengartner MO (2001) Programmed cell death: alive and well in the new millennium. Trends Cell Biol 11:526–534

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Yamada K, Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I (1999) Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant J 19:43–53

    Article  PubMed  CAS  Google Scholar 

  • Kuroyanagi M, Yamada K, Hatsugai N, Kondo M, Nishimura M, Hara-Nishimura I (2005) Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J Biol Chem 280:32914–32920

    Article  PubMed  CAS  Google Scholar 

  • Lam E (2004) Controlled cell death, plant survival and development. Mol Cell Biol 5:305–315

    CAS  Google Scholar 

  • Lam E (2005) Vacuolar proteases livening up programmed cell death. Trends Cell Biol 15:124–127

    Article  PubMed  CAS  Google Scholar 

  • Lincoln JE, Richael C, Overduin B, Smith K, Bostock R, Gilchrist DG (2002) Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proc Natl Acad Sci 99:15217–15221

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577

    Article  PubMed  CAS  Google Scholar 

  • Mannick JB, Schonhoff CM (2004) NO means no and yes: regulation of cell signaling by protein nitrosylation. Free Rad Res 38:1–7

    Article  CAS  Google Scholar 

  • Mlejnek P, Prochazka S (2002) Activation of caspase-like proteases and induction of apoptosis by isopentenyladenosine in tobacco BY-2 cells. Planta 215:158–166

    Article  PubMed  CAS  Google Scholar 

  • Nakaune S, Yamada K, Kondo M, Tabata S, Nishimura M, Hara-Nishimura I (2005) A vacuolar processing enzyme, δVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 17:876–887

    Article  PubMed  CAS  Google Scholar 

  • Rojo E, Martin R, Carter C, Zouhar J, Pan S, Plotnikova J, Jin H, Paneque M, Sanchez-Serrano JJ, Baker B, Ausubel FM, Raikhel NV (2004) VPEγ exhibits a caspase-like activity that contributes to defense against pathogens. Curr Biol 14:1897–1906

    Article  PubMed  CAS  Google Scholar 

  • Rotari VI, He R, Gallois P (2005) Death by proteases in plants: whodunit. Physiol Plant 123:376–385

    Article  CAS  Google Scholar 

  • Sanmartin M., Jaroszewski L., Raikhel NV, Rojo E (2005) Caspases. Regulating death since the origin of life. Plant Physiol 137:841–847

    Article  PubMed  CAS  Google Scholar 

  • Seay M, Patel S, Dinesh-Kumar SP (2006) Autophagy and plant innate immunity. Cell Microbiol 8:899–906

    Article  PubMed  CAS  Google Scholar 

  • Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, von Arnold S, Zhivotovsky B, Bozhkov PV (2004) Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 14:R339–340

    Article  PubMed  CAS  Google Scholar 

  • Uren AG, O’Rourke K, Aravind L, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967

    PubMed  CAS  Google Scholar 

  • Vercammen D, van de Cotte B, De Jaeger G, Eeckhout D, Casteels P, Vanepoele K, Vandenberghe I, Van Beeumen J, Inze D, Van Breusegem F (2004) Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 279:45329–45336

    Article  PubMed  CAS  Google Scholar 

  • Vercammen D, Belenghi B, van de Cotte B, Beunens T, Gavigan J-A, de Rycke R, Brackenier A, Inzé D, Harris JL, van Breusegem F (2006) Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9. J Mol Biol 364:625–636

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Lam E (2004) Recent advance in the study of caspase-like proteases and Bax inhibitor-1 in plants: their possible roles as regulator programmed cell death. Mol Plant Pathol 5:65–70

    Article  CAS  Google Scholar 

  • Watanabe N, Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280:14691–14699

    Article  PubMed  CAS  Google Scholar 

  • Woltering EJ (2004) Death proteases come alive. Trends Plant Sci 9:469–472

    Article  PubMed  CAS  Google Scholar 

  • Woltering EJ, van der Bent A, Hoeberichts FA (2002) Do plant caspases exist? Plant Physiol 130:1764–1769

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Shimada T, Nishimura M, Hara-Nishimura I (2005) A VPE family supporting various vacuolar functions in plants. Physiol Plant 123:369–375

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Piszczek.

Additional information

Communicated by A. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piszczek, E., Gutman, W. Caspase-like proteases and their role in programmed cell death in plants. Acta Physiol Plant 29, 391–398 (2007). https://doi.org/10.1007/s11738-007-0086-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-007-0086-6

Keywords

Navigation