Skip to main content
Log in

Quantitative analysis of phenolics in selected crop species and biological activity of these compounds evaluated by sensitivity of Echinochloa crus-galli

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the content of selected phenolic compounds in white mustard, buckwheat, spring barley, oat and rye grown under field conditions. Moreover, the allelopathic efficiency of these compounds was evaluated by sensitivity of Echinochloa crus-galli. The aromatic acids: trans-cinnamic, salicylic, ferulic, chlorogenic, p-hydroxybenzoic, protocatechuic, p-coumaric and vanillic were separated from crop plants by TLC and determined spectrophotometrically.

Differences in concentrations of analysed compounds were observed for most of the examined plant species. The highest concentration was noticed for cinnamic acid and ranged from 360 µg·g−1 DW in rye to 2770 µg·g−1 DW in spring barley. The relatively high concentration was noticed for ferulic acid (from 73.8 µg·g−1 DW in buckwheat to 1046 µg·g−1 DW in spring barley) and p-coumaric acid (from 50 µg·g−1 DW in oat to 1499 µg·g−1 DW in buckwheat). The observed differences in the phenolics content between two successive vegetation seasons can reflect the effect of abiotic and biotic environmental factors on the phenolics level in studied plants.

In the greenhouse experiment the effect of particular compounds on the growth of Echinochloa crus-galli was also studied. It has been found that the examined phenolics, and especially trans-cinnamic acid and mixture of phenolic compounds, significantly inhibit the growth of Echinochloa crus-galli. The obtained results may contribute to the explanation of the biological activity of some phenolic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TLC:

thin — layer chromatography

AE:

allelopathic efficiency

x, x/2, x/4:

concentrations of the phenolic compounds

References

  • Bate N.J., Orr, J., Ni W., Merom A., Nadler-Hassar T., Doerner P.W., Dixon R.A., Lamb C.J., Elkind Y. 1994. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. In: Proceedings National Academy of Science, USA, 91: 7608–7612.

  • Blum U. 1999. Designing laboratory plant debris-soil bioassays: some reflections. In: Inderjit, Dakshini K.M.M., Foy C.L. (eds). Principles and practices in plant ecology: allelochemical interactions. CRC, Boca Raton, pp. 17–23.

    Google Scholar 

  • Caldwell M.M., Robberecht R., Flint S.D. 1983. Internal filters: Prospects for UV-acclimation in higher plants. Physiol. Plant., 58: 445–450.

    Article  CAS  Google Scholar 

  • Delalonde M., Barret Y., Coumans M.P. 1996. Development of phenolic compounds in maize anthers (Zea mays) during cold pretreatment prior to androgenesis. J. Plant Physiol., 149: 612–616.

    CAS  Google Scholar 

  • Duke S.O., Dayan F.E., Romagni J.G., Rimando A.M. 2000. Natural products as sources of herbicides: current status and future trends. Weed Res., 40: 99–111.

    Article  CAS  Google Scholar 

  • Duke S.O. 1985. Biosynthesis of phenolic compounds. Chemical manipulation in higher plants. In: Thompson A.C. (ed.). The chemistry of allelopathy: Biochemical interactions among plants. Am. Chem. Soc. Symp. Ser. 268. Am. Chem. Soc., Washington, DC., pp. 113–131.

    Google Scholar 

  • Einhellig F.A. 1996. Interactions involving allelopathy in cropping system. Agr. J., 88: 886–893.

    Article  CAS  Google Scholar 

  • Einhellig F.A., Rasmussen J.A., Hejl A.M., Souza I.F. 1993. Effects of root exudate sorgoleone on photosynthesis. J. Chem. Ecol., 19: 369–375.

    Article  CAS  Google Scholar 

  • Gonzalez V.M., Kazimir J., Nimbal C., Weston L.A., Cheniae G.M. 1997. Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J. Agric. Food Chem., 45: 1415–1421.

    Article  CAS  Google Scholar 

  • Guenzi W.D., McCalla T.M. 1966. Phenolic acid in oats, wheat, sorghum, and corn residues and their phytotoxixity. Agr. J., 58: 303–304.

    Article  CAS  Google Scholar 

  • Guinn G., Eindenbock M.P. 1982. Catechin and condensed tannin contents of leaves and bolls of cotton in relation to irrigation and boll load. Crop Sci., 22: 614–616.

    Article  CAS  Google Scholar 

  • Hao Z., Charles D.J., Yu L., Simon J.E. 1999. Purification and characterization of a phenylalanine ammonia-lyase from Ocimum basilicum. Phytochem., 43: 735–739.

    Google Scholar 

  • Harborne J.B. 1985. Phenolics and plant defence. Annu. Proc. Phytochem. Soc. Europe., 25: 395–408.

    Google Scholar 

  • Horner J.D. 1990. Nonlinear effects of water deficits on foliar tannin concentration. Bioche. Syst. Ecol., 18: 211–213.

    Article  CAS  Google Scholar 

  • Inderjit 1996. Plant phenolics in allelopathy. Bot. Rev., 62: 186–202.

    Google Scholar 

  • Inderjit, Duke S.O. 2003. Ecophysiological aspects of allelopathy. Planta, 217: 529–539.

    Article  PubMed  CAS  Google Scholar 

  • Inderjit, Keating K.I. 1999. Allelopathy: principles, procedures, progress and promises for biological control. Adv. Agr., 67: 141–231.

    Article  CAS  Google Scholar 

  • Jones D.H. 1984. Phenylalanine ammonia-lyase: regulation of its induction and its role in plant development. Phytochem., 23: 1349–1359.

    Article  CAS  Google Scholar 

  • Mattice J., Dilday R.H., Gbur E.E., Skulman B.W. 2001. Inhibition of barnyardgrass growth with rice. Agr. J., 93: 8–11.

    Article  Google Scholar 

  • Olofsdotter M., Navarez D.C. 1996. Allelopathic rice for Echinochloa crus-galli control. In: Proceedings 2nd International Weed Control Congress, Copenhagen, Denmark, 1175–1181.

  • Olofsdotter M., Rebulanan M., Madrid A., Wang D.L., Navarez D., Olk D.C. 2002. Why phenolic acids are unlikely primary allelochemicals in rice. J. Chem. Ecol., 28: 229–242.

    Article  PubMed  CAS  Google Scholar 

  • Piskorz B. 1997. Oddziaływanie allelopatyczne chwastnicy jednostronnej (Echinochloa crus-galli L.) na niektóre rośliny warzywne. I. Wpływ wodnych wyciagówz chwastnicy jednostronnej na kiełkowanie ogórka, pomidora i rzodkiewki. Zesz. Probl. Post. Nauk Roln., 452: 153–165.

    Google Scholar 

  • Putnam A.R., De Frank J., Barnes J.P. 1983. Exploitation of allelopathy for weed control in annual and perennial cropping systems. J. Chem. Ecol., 9: 1001–1010.

    Article  Google Scholar 

  • Rice E.L. 1984. Allelopathy. Second Edition, Academic Press, New York, pp. 422.

    Google Scholar 

  • Roll H. 1986. Yield of maize as related to the duration of Echinochloa crus-galli and Amaranthus retroflexus in maize stand. Pam. Puł., 87: 155–170.

    Google Scholar 

  • Romagni J.G., Allen S.N., Dayan F.E. 2000. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol., 26: 303–313.

    Article  CAS  Google Scholar 

  • Rösler J., Krekel F., Amrhein N., Schmid J. 1997. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol., 113: 175–179.

    Article  PubMed  Google Scholar 

  • Ruiz J.M., Bretones G., Baghour M., Belakbir A., Romero L. 1998. Relationship between boron and phenolic metabolism in tobacco leaves. Phytochem., 48: 269–272.

    Article  CAS  Google Scholar 

  • Ruiz J.M., Garcia P.C., Rivero R.M., Romero L. 1999. Response of phenolic metabolism to the application of carbendazim plus boron in tobacco. Physiol. Plant., 106: 151–157.

    Article  CAS  Google Scholar 

  • Schweiger J., Lang M., Lichtenthaler H.K. 1996. Differences in fluorescence excitation spectra of leaves between stressed and non-stressed plants. J. Plant Physiol., 148: 536–547.

    CAS  Google Scholar 

  • Sène M., Dorè T., Gallet Ch. 2001. Relationship between biomass and phenolic production in grain sorghum grown under different conditions. Agr. J., 93: 49–54.

    Article  Google Scholar 

  • Smith G.D., Doan N.T. 1999. Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. J. Appl. Phycol., 11: 337–344.

    Article  CAS  Google Scholar 

  • Stupnicka-Rodzynkiewicz E., Dubert F., Hochól T., Hura T., Lepiarczyk A., Stoklosa A. 2004. Possibility of application of plants allelopathy for weed control. (in Polish) Zesz. Probl. Post. Nauk Roln., 496: 343–355.

    Google Scholar 

  • Tempel A.S. 1981. Field studies of the relationship between herbivore damage and tannin content in bracken (Pteridium aquilinum Kuhn.). Oecologia, 51: 97–106.

    Article  Google Scholar 

  • Yenish J.P., Worsham A.D., York A.C. 1996. Cover crops for herbicide replacement in no-tillage corn (Zea mays). Weed Technol., 10: 815–821.

    CAS  Google Scholar 

  • Vangessel M.J., Renner K.A. 1990. Redroot pigweed (Amaranthus retroflexus) and barnzard grass (Echinochloa crus-galli) interference in potatoes (Solanum tuberosum). Weed Sci., 38: 338–343.

    Google Scholar 

  • Wu H., Pratley J., Lemerle D., Haig T. 1999. Crop cultivars with allelopathic capability. Weed Res., 39: 171–180.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hura, T., Dubert, F., Dąbkowska, T. et al. Quantitative analysis of phenolics in selected crop species and biological activity of these compounds evaluated by sensitivity of Echinochloa crus-galli . Acta Physiol Plant 28, 537–545 (2006). https://doi.org/10.1007/s11738-006-0049-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-006-0049-3

Key words

Navigation