Skip to main content
Log in

Modification in indole-3-acetic acid metabolism, growth and development of strawberry through transformation with maize IAA-glucose synthase gene (iaglu)

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Strawberry (Fragaria × ananassa Duch.) was transformed with maize IAA-glucose synthase gene (iaglu) via Agrobacterium tumefaciens using binary vector system. Incorporation of the transgene was confirmed by PCR and Southern blot analysis and its transcription by RT-PCR. Transformation resulted in a significant increase of ester-conjugated IAA level in tissue of all tranegenic plants while free IAA level was significantly lower in two trangenic clones tested and in other two it was comparable to that in wild-type plants. The level of amide-conjugated hormone was not affected by transformation with iaglu. The change in endogenous IAA metabolism affected the growth and development of transgenic strawberry plants but the effect was not fully correlated with changes in endogenous IAA level. In general, the transgenic clones were dwarfish — their leaf laminas were smaller, leaf petioles shorter and the crown diameter smaller in comparison to wild-type ones, although in one clone the difference was significant only for leaf lamina area. Shoots of all transgenic clones formed more roots in vitro than the wild-type plants and in two clones the roots were longer than in the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IAA:

indole-3-acetic acid

BA:

benzyladenine

CaMV 35S:

cauliflower mosaic virus promoter

dCTP:

2′-deoxycytidine-5′-triphosphate

GA3 :

gibberelic acid

IBA:

indole-3-butyric acid

PCR:

polymerase chain reaction

RT:

reverse transcription

SDS:

sodium dodecyl sulfate

UDPG:

uridine 5′-diphosphate-glucose

References

  • Bachelier C., Graham J., Machray G., Du Manoir J., Roucou J.F., McNicol R.J., Davies H. 1997. Integration of an invertase gene to control sucrose metabolism in strawberry cultivars. Acta Hort., 439: 161–163.

    CAS  Google Scholar 

  • Bandurski R.S. 1980. Homeostatic control of concentrations of indole-3-acetic acid. In: Plant Growth Substances 1979, ed. by F. Skoog, Springer-Verlag, Berlin and Heidelberg: 37–49.

    Google Scholar 

  • Bandurski R.S., Schulze A., Reinecke D.M. 1986. Biosynthetic and metabolic aspects of auxins. In: Plant Growth Substances 1985, ed. by M. Bopp, Springer-Verlag, Berlin and Heidelberg: 83–91.

    Google Scholar 

  • Bevan B. 1984. Binary Agrobacterium vectors for plant transformation. Nuc. Acids Res., 12: 8711–8721.

    Article  CAS  Google Scholar 

  • Bojarczuk K. 1997. Regulatory ro linne w szkółkarstwie. In: Regulatory wzrostu i rozwoju ro lin. Zastosowanie w ogrodnictwie, rolnictwie, le nictwie i w kulturach tkanek, ed. by L. S. Jankiewicz, Wydawnictwo Naukowe PWN, Warszawa: 137–165.

    Google Scholar 

  • Boxus P. 1974. The production of strawberry plants by in vitro micropropagation. J. Hort. Sci., 49: 209–210.

    CAS  Google Scholar 

  • Chang S., Puryear J., Cairney J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep., 11: 114–116.

    Google Scholar 

  • Chen K.-H., Miller A.N., Patterson G.W., Cohen J.D. 1988. A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol., 86: 822–825.

    PubMed  CAS  Google Scholar 

  • Cohen J.D., Bandurski R.S. 1982. Chemistry and physiology of the bound auxins. Ann. Rev. Plant. Physiol., 33: 403–430.

    Article  CAS  Google Scholar 

  • Dobrza ska M. 1995. Izolacja całkowitego DNA rolinnego metod CTAB In: In ynieria genetyczna i biologia molekularna. Metody. Podr cznik Laboratoryjny IBB PAN, ed. by G. Palamarczyk, J. Rytka, M. Skoneczny, Instytut Biochemii i Biofizyki PAN, Warszawa: 4-10–4-11.

    Google Scholar 

  • Donzella G., Spena A., Rotino G.L. 2000. Transgenic parthenocarpic eggplants: superior germplasm for increased winter production. Mol. Breed., 6: 79–86.

    Article  Google Scholar 

  • El Mansouri I., Mercado J.A., Valpuesta V., López-Aranda J., Pliego-Alfaro F., Quesada M.A. 1996. Shoot regeneration and Agrobacterium-mediated transformation of Fragaria vesca L. Plant Cell Rep., 15: 642–646.

    Article  Google Scholar 

  • Ficcadenti N., Sestili S., Pandolfini T., Cirillo C., Rotino G.L., Spena A. 1999. Genetic engineering of parthenocarpic fruit development in tomato. Mol. Breed., 5: 463–470.

    Article  Google Scholar 

  • Fladung M. 1993. Influence of the indoleacetic acidlysine synthetase gene (iaaL) of Pseudomonas syringae subsp. savastanoi on yield and attributes of potatoes. Plant Breeding, 111: 242–245.

    Article  CAS  Google Scholar 

  • Giovannini A., Zottini M., Morreale G., Spena A., Allavena A. 1999. Ornamental traits modification by rol genes in Osteospermum ecklonis transformed with Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol. Plant., 35: 70–75.

    Article  CAS  Google Scholar 

  • Hammerschlag F.A. 1992. Somaclonal variation. In: Biotechnology in Perennial Fruit Crops, ed. by F.A. Hammerschlag, R.E. Litz, C.A.B. International, Wallingford: 35–55.

    Google Scholar 

  • Hobbie L., Estelle M. 1994. Genetic approaches to auxin action. Plant, Cell and Environment, 17:525–540.

    Article  PubMed  CAS  Google Scholar 

  • Krzymowska M. 1995. Transformacja Agrobacterium tumefaciens metod elektroporacji. In: In ynieria Genetyczna i Biologia Molekularna. Metody. Podr cznik Laboratoryjny IBB PAN, ed. by G. Palamarczyk, J. Rytka, M. Skoneczny, Instytut Biochemii i Biofizyki PAN, Warszawa: 1-4–1-5.

    Google Scholar 

  • McQuin-Mason S., Hamilton R.H. 1989. The biosynthesis of indole-3-acetic acid from D-tryptophan in Alasca pea plastids. Plant Cell Physiol., 30: 999–1005.

    Google Scholar 

  • Mercuri A., De Benedetti L., Bruna S., Burchi G., Foglia G., Schiva T. 2000. New genotypes of Limonium obtained using bacterial genes. Fiori. Colture-Protette, 29: 97–101.

    Google Scholar 

  • Michalczuk B. 2000. Genetic transformation as a method for breeding ornamental plants. In: Abstracts, IX Ogólnopolska Konferencja Kultur in vitro i Biotechnologii Ro lin “Modyfikowanie Genomu Ro lin”, ed. by E. Łojkowska, A. Krølicka, Gda sk - Sobieszewo: 12.

    Google Scholar 

  • Michalczuk L., Baldi B.G., Cohen J.D. 1990. Myo-inositol conjugates of indole-3-acetic acid. In: Inositol Metabolism in Plants, ed. by D.J. Morre, W.F. Boss, F.A. Loewus. Wiley-Liss, New York: 93–106.

    Google Scholar 

  • Michalczuk L., Bandurski R.S. 1980. UDP-glucose: indoleacetic acid glucosyl transferase and indoleacetyl-glucose: myo-inositol indoleacetyl transferase. Bioch. Biophys. Res. Commun., 93: 588–592.

    CAS  Google Scholar 

  • Michalczuk L., Bandurski R.S. 1982. Enzymic synthesis of 1-O-indol-3-ylacetyl-β-D-glucose and indol-3-yl-acetyl-myo-inositol. Biochem. J., 207: 273–281.

    PubMed  CAS  Google Scholar 

  • Michalczuk L., Michalczuk B. 2001. Growth and development of transgenic petunia carrying maize IAA-glucose synthetase gene (iaglu). In: Abstracts, 17th International Conference on Plant Growth Substances, Brno: 90.

  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15: 473–497.

    Article  CAS  Google Scholar 

  • Niemirowicz-Szczytt K., Bartoszewski G. 2000. Transgene expression in plant cell. Biotechnologia, 4: 11–23

    Google Scholar 

  • Romano C.P., Hein M.B., Klee H.J. 1991. Inactivation of auxin in tobacco transformed with indoleacetic acid-lysine sythetase gene of Pseudomonas savastanoi. Genes Dev., 5: 438–446.

    Article  PubMed  CAS  Google Scholar 

  • Rotino G.L., Perri E., Zottini M., Sommer H., Spena A. 1997. Genetic engineering of parthenocarpic plants. Nature Biotech., 15: 1398–1401.

    Article  CAS  Google Scholar 

  • Spena A., Prinsen E., Fladung M., Schulze S.C., Van Onckelen H. 1991. The indoleacetic acid-lysine synthetase gene of Pseudomonas syringae subsp. savastanoi induces developmental alterations in transgenic tobacco and potato plants. Mol. Gen. Genet., 227: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Szechtman A.D., Salts Y., Carmi N., Shabtai S., Pilowsky M., Barg R. 1997. Seedless fruit setting in response to NAM treatment of transgenic tomato expressing the iaaH gene specifically in the ovary. Acta Hort., 447: 597–598.

    Google Scholar 

  • Szerszen J.B., Szczyglowski K., Bandurski R.S. 1994. iaglu, a gene from Zea mays involved in conjugation of grwoth hormone indole-3-acetic acid. Science, 265: 1699–1701.

    Article  PubMed  CAS  Google Scholar 

  • Szopa J., Wróbel M. 2001. Transfer and transgene expression. Biotechnologia, 1: 63–72

    Google Scholar 

  • Van der Salm T.P.M., Bouwer R., Van Dijk A.J., Keizer L.C.P., Hänisch ten Cate C.H., Van der Plas L.H.W., Dons H.J.M. 1998. Stimulation of scion bud release by rol gene transformed rootstocks of Rosa hybrida L. J. Exp. Bot., 49: 847–852.

    Article  Google Scholar 

  • Van der Salm T.P.M., Hänisch ten Cate C.H., Dons H.J.M. 1996. Prospects for applications of rol genes for crop improvement. Plant Mol. Biol. Rep., 14: 207–228.

    Google Scholar 

  • Wawrzy czak D., Sowik I., Michalczuk L. 1998. Shoot regeneration from in vitro leaf explants of five strawberry genotypes (Fragaria x ananassa Duch.). J. Fruit Ornament. Plant Res., VI: 63–71.

    Google Scholar 

  • Wawrzy czak D., Sowik I., Michalczuk, L. 2000. Agrobacterium-mediated transformation of five strawberry genotypes. J. Fruit Ornament. Plant Res., VIII: 1–8.

    Google Scholar 

  • Yang J., Lee H.-J., Shin D.H., Oh S.K., Seon J.H., Paek K.Y., Han K.-H. 1999. Genetic transformation of Cymbidium orchid by particle bombardment. Plant Cell Rep., 18: 978–984.

    Article  CAS  Google Scholar 

  • Zhu L.-H., Welander M. 1999. Growth characteristics of apple cultivar Gravenstein plants grafted onto the transformed rootstock M26 with rolA and rolB genes under non limiting nutrient conditions. Plant Sci., 147: 75–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danuta Wawrzy czak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wawrzy czak, D., Michalczuk, L. & Sowik, I. Modification in indole-3-acetic acid metabolism, growth and development of strawberry through transformation with maize IAA-glucose synthase gene (iaglu). Acta Physiol Plant 27, 19–28 (2005). https://doi.org/10.1007/s11738-005-0032-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0032-4

Key words

Navigation