Skip to main content
Log in

Antioxidative protection in the leaves of dark-senescing intact barley seedlings

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In order to elucidate the possibility of in vivo oxidative modification of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase, EC 4.1.1.39) as a triggering mechanism for its preferential degradation early in senescence, some antioxidant compounds, protective enzymes, H2O2 and protein carbonylation levels were studied in the leaves during dark-induced senescence of barley (Hordeum vulgare L. cv. “Obzor”) seedlings. Analyses were performed in extracts as well as in purified chloroplasts. Some weakening of the antioxidative protection was detected during the treatment: diminution in the ascorbate and non-protein SH (mainly glutathione) pools, lower activities of superoxide dismutase, guaiacol and ascorbate peroxidases. However, no accumulation of H2O2 was found, lower level of protein carbonylation in darkness was measured and the percentage of reduced ascorbate was maintained high. Data concerning antioxidant compounds in chloroplasts revealed some impairment of the ascorbate and glutathione pools under induced senescence - the level of non-protein thiols declined during early senescence whereas the ascorbate pool was not significantly changed. The percentage of reduced ascorbate remained high in the chloroplasts and the activities of superoxide dismutase and of ascorbate peroxidase were conserved. Taken together the results are not in accordance with the possibility of in vivo oxidative modification of Rubisco in the case of dark-induced senescence. Our data bring some support to the view about redox regulation of Rubisco turnover in senescence through the pool of the low-molecular chloroplastic thiols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

ASC:

ascorbic acid

CAT:

catalase

FW:

fresh weight

GPX:

guaiacol peroxidase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  • Aebi H. 1984. Catalase in vitro. In: Colowick, S.P., Kaplan, N.O., (Eds), Methods Enzymol., Acad. Press. Florida, 105: 121–126.

    Google Scholar 

  • Alexieva V., Sergiev I, Mapelli S., Karanov E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell Environ. 24: 1337–1344.

    Article  CAS  Google Scholar 

  • Alscher R.G., Erturk N., Heath L.S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot., 53: 1331–1341.

    Article  PubMed  CAS  Google Scholar 

  • Arnon D. I. 1949. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol., 24: 1–15.

    PubMed  CAS  Google Scholar 

  • Biswal B., Biswal U. C. 1999. Leaf senescence: Physiology and molecular biology. Cur. Sci., 77: 755–782.

    Google Scholar 

  • Bradford M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp Ch., Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–287.

    Article  PubMed  CAS  Google Scholar 

  • Chang C. J., Kao C. H. 1998. H2O2 metabolism during senescence of rice leaves: changes in enzyme activities in light and darkness. Plant Growth Regul., 25: 11–15.

    Article  CAS  Google Scholar 

  • Chiba A., Ishida H., Nishizawa N. K., Makino A., Mae T. 2003. Exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat. Plant Cell Physiol. 44: 914–921.

    Article  PubMed  CAS  Google Scholar 

  • Dat J., Vandanabeele S., Vranova E., Van Montagu M., Inze D., Van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sc., 57: 779–795.

    Article  CAS  Google Scholar 

  • De Kok L.J., Graham M. 1989. Levels of pigments, soluble proteins, amino acids and sulfhydryl compounds in foliar tissue of Arabidopsis thaliana during dark-induced and natural senescence. Plant Physiol. Biochem., 27: 203–209.

    Google Scholar 

  • Desimone M., Wagner E., Johanningmeier U. 1998. Degradation of active-oxygen-modified ribulose-1,5-bisphosphate carboxylase/oxygenase by chloroplastic proteases requires ATP-hydrolysis. Planta, 205: 459–466.

    Article  CAS  Google Scholar 

  • Dhindsa R. S., Plumb-Dhindsa P., Thorpe T. A. 1981. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot., 32: 93–101.

    Article  CAS  Google Scholar 

  • Edreva A., Hadjiiska E. 1984. About the determination of sulfhydril (thiol) group content in plant material. Bulg. J. Plant Physiol. 10: 73–83 (in Bulg., English abstract).

    CAS  Google Scholar 

  • Friedrich J.W., Huffaker R.C. 1980. Photosynthesis, leaf resistance and ribulose 1,5- bisphosphate carboxylase degradation in senescing barley leaves. Plant Physiol., 65: 1103–1107.

    PubMed  CAS  Google Scholar 

  • Gonzalez A., Steffen K. L., Lynch J. P. 1998. Light and excess manganese. Implications for oxidative stress in common bean. Plant Physiol. 118: 493–504.

    Article  CAS  PubMed  Google Scholar 

  • Hodges D.M., Andrews Chr. J., Johnson D. A., Hamilton R.I, 1996. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol. Plantarum 98: 685–692.

    Article  CAS  Google Scholar 

  • Hörtensteiner S., Feller U. 2002. Nitrogen metabolism and remobilization during senescence. J. Exp. Bot., 53: 927–937.

    Article  PubMed  Google Scholar 

  • Inada N., Sakai A., Kuroiwa H., Kuroiwa T. 1998. Three-dimensional analysis of the senescence program in rice (Oriza sativa L.) coleoptiles. Planta, 206: 585–597.

    Article  CAS  Google Scholar 

  • Irihimovitch V., Shapira M. 2000. Glutathione redox potential modulated by reactive oxygen species regulates translation of Rubisco large subunit in the chloroplast. J. Biol. Chem., 275 (21): 16289–95.

    Article  PubMed  CAS  Google Scholar 

  • Jabs T. 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmac. 57: 231–245.

    Article  CAS  Google Scholar 

  • Kanazawa S., Sano S., Koshiba T., Ushimaru T. 2000. Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence. Physiol. Plant., 109: 211–216.

    Article  CAS  Google Scholar 

  • Kar M., Feierabend J. 1984. Metabolism of activated oxygen in detached wheat and rye leaves and its relevance to the initiation of senescence. Planta, 160: 385–391.

    Article  CAS  Google Scholar 

  • Ku niak E., Skłodowska M. 2001. Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. Plant Sci., 160: 723–731.

    Article  Google Scholar 

  • McKinney G. 1941. Absorbtion of light by chlorophyll solutions. J. Biol. Chem., 140: 315–322.

    Google Scholar 

  • May M. J., Vernoux T., Leaver C., Van Montagu M., Inze D. 1998. Glutathione homeostasis in plants: implications for environmental sensing and plant development. J. Exp. Bot., 49: 649–667.

    Article  CAS  Google Scholar 

  • McRae D.G., Thompson J.E. 1983. Senescence-dependent changes in superoxide anion production by illuminated chloroplasts from bean leaves. Planta, 158: 185–193.

    Article  CAS  Google Scholar 

  • Mehta R.A., Fawcett T.W., Porath D., Mattoo A. 1992. Oxidative stress causes rapid membrane translocation and in vivo degradation of ribulose-1,5-bisphosphate carboxylase/ oxygenase. J. Biol. Chem., 267: 2810–2816.

    PubMed  CAS  Google Scholar 

  • Merzlyak M.N., Hendry G.A.F. 1994. Free radical metabolism, pigment degradation and lipid peroxidation in leaves during senescence. Proc. Roy. Soc. Edinburg B 102: 459–471.

    Google Scholar 

  • Minamikawa T., Toyooka K., Okamoto T., Hara-Nishimura I., Nishimura M. 2001. Degradation of ribulose-bisphosphate carboxylase by vacuolar enzymes of senescing French bean leaves: immunochemical and ultrastructural observations. Protoplasma 218: 144–153.

    Article  PubMed  CAS  Google Scholar 

  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sci., 7: 405–410.

    Article  CAS  Google Scholar 

  • Moreno J., Penarrubia L., Garcia-Ferris C. 1995. The mechanism of redox regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase turnover. A hypothesis. Plant Physiol. Biochem., 33: 121–127.

    CAS  Google Scholar 

  • Munne-Bosch S., Jubany-Mari T., Alegre L. 2001. Drought-induced senescence is characterized by a loss of antioxidant defenses in chloroplasts. Plant Cell Environ., 24: 1319–1327.

    Article  CAS  Google Scholar 

  • Nakatani H.Y., Barber J. 1977. An improved method for isolating chloroplasts retaining their outer membranes. Biochim. Biophys. Acta, 461: 510–512.

    Article  CAS  Google Scholar 

  • Noctor G., Foyer, C.H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49: 249–279.

    Article  PubMed  CAS  Google Scholar 

  • Pastori G. M., Del Rio L. A. 1997. Natural senescence of pea leaves. An activated oxygen-mediated function for peroxisomes. Plant Physiol., 113: 411–418.

    PubMed  CAS  Google Scholar 

  • Pe arrubia L, Moreno J. 1990. Increased susceptibility of ribulose-1,5-bisphosphate carboxylase/oxygenase to proteolytic degradation caused by oxidative treatments. Arch. Biochem. Biophys. 281: 319–323.

    Article  Google Scholar 

  • Piquery L., Davoine C., Huault C., Billard J-P., 2000. Senescence of leaf sheaths of ryegrass stubble: changes in enzyme activities related to H2O2 metabolism. Plant Growth Regul., 30: 71–77.

    Article  CAS  Google Scholar 

  • Prochazkova D., Sairam R. K., Srivastava G. C., Singh D. V. 2001. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci., 161: 765–771.

    Article  CAS  Google Scholar 

  • Reznick A.Z., Packer L. 1994. Oxidative damage to proteins: spectrophotometric method for carbonyl assay, In: Packer, L. (Ed.), Methods Enzymol., Academic Press, San Diego, CA, 233: 357–363.

    Google Scholar 

  • Roulin S., Feller U. 1997. Light-induced proteolysis of stromal proteins in pea (Pisum sativum L.) chloroplasts: requirement for intact organelles. Plant Sci., 128: 31–41.

    Article  CAS  Google Scholar 

  • Roulin S., Feller U. 1998. Light independent degradation of stromal proteins in intact chloroplasts isolated from Pisum sativum L. leaves: requirement for divalent cations. Planta, 205: 297–304.

    Article  CAS  Google Scholar 

  • Simova-Stoilova L., Demirevska-Kepova K., Stoyanova Z. 2002. Ribulose-1,5-bisphosphate carboxylase/oxygenase specific proteolysis in barley chloroplasts during dark induced senescence. Photosynthetica, 40: 561–566.

    Article  CAS  Google Scholar 

  • Stadtman E. R. 1990. Covalent modification reactions are marking steps in protein turnover. Biochemistry, 29: 6323–6331.

    Article  PubMed  CAS  Google Scholar 

  • Thompson J. E., Legge R.L., Barber R.F. 1987. The role of free radicals in senescence and wounding. New Phytol., 105: 317–344.

    Article  CAS  Google Scholar 

  • Van Hasselt P.R., 1972. Photo-oxidation of leaf pigments in Cucumus leaf discs during chilling. Acta Bot. Neerl., 21: 539–543.

    Google Scholar 

  • Winter H., Robinson D. G., Heldt H. W., 1993. Subcellular volumes and metabolite concentrations in barley leaves. Planta, 191: 180–190.

    Article  CAS  Google Scholar 

  • Wittenbach V. A. 1978. Breakdown of ribulose bisphosphate carboxylase and changes in proteolytic activity during dark-induced senescence of wheat seedlings. Plant Physiol., 62: 604–608.

    PubMed  CAS  Google Scholar 

  • Wittenbach V. A. 1979. Ribulose bisphosphate carboxylase and proteolytic activity in wheat leaves from anthesis through senescence. Plant Physiol., 64: 884–887.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyudmila Petrova Simova-Stoilova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simova-Stoilova, L.P., Demirevska-Kepova, K.N. & Stoyanova, Z.P. Antioxidative protection in the leaves of dark-senescing intact barley seedlings. Acta Physiol Plant 27, 349–357 (2005). https://doi.org/10.1007/s11738-005-0011-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0011-9

Key words

Navigation