Skip to main content
Log in

Metabolism of phenolic compounds in Vitis riparia seeds during stratification and during germination under optimal and low temperature stress conditions

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

We studied the alterations in phenolic compounds in grape seeds during their stratification and germination under optimal conditions (+25 °C) and at low temperature (+10 °C). Biological materials in the study were seeds of Vitis riparia. Phenolic compounds were extracted from defatted seeds using 80 % methanol or 80 % acetone. The content of total phenolics was determined with the Folin-Ciocalteau reagent, while the content of tannins was determined by vanillin assay and the protein (BSA) precipitation method. The RP-HPLC method was used to determine phenolic compounds (phenolic acids, catechins) in the extracts. High amounts of tannins, catechins, gallic acid and lesser amounts of p-coumaric acid were found in the seeds. The content of total phenolics in acetone extracts was higher than that obtained using methanol. The amounts of phenolic acids and tannins found in V. riparia seeds after stratification were much lower. It may confirm a possible role of these compounds in dormancy of V. riparia seeds. After 72 h of low temperature treatment, inhibition of grape root growth and biochemical changes in seeds were detected. The chilling stimulated increased accumulation of some phenolic compounds (free gallic acid and catechins) in the seeds. These substances can protect plants against some abiotic stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amarowicz R., Piskuła M., Honke J., Rudnicka B., Troszy ska A., Kozłowska H. 1995. Extraction of phenolic compounds from lentil seeds (Lens culinaris) with various solvents, Pol. J. Food Nutr. Sci. 4/85: 53–62.

    CAS  Google Scholar 

  • Amarowicz R., Weidner S. 2001. Content of phenolic acids in rye caryopses determined using DAD-HPLC method. Czech J. Food Sci. 19: 201–203.

    CAS  Google Scholar 

  • Balthazard J. 1969. Températures alternées, longueur des embryons et pouvoir germinatif des graines de Vigne. Comptes Rendus de l’Académie des Sciences de Paris, Serie D 269: 2355–2358.

    Google Scholar 

  • Baskin C.C., Baskin J.M. 1998. Seeds. Ecology, biogeography, and evolution of dormancy and germination. Acad. Press. New York.

    Google Scholar 

  • Bewley J.D., Black M. 1994. Seeds-physiology of development and germination. Plenum Press, New York and London.

    Google Scholar 

  • Bray E.A., Bailey-Serres J., Weretilnyk E. 2000. Responses to Abiotic Stresses. Chapter 22. In: Responses to Abiotic stresses. Buchannan B., Jones R. (Eds). American Society of Plant Physiologists, Rockville, MD: 1158–1249.

    Google Scholar 

  • Bugnon F., Bessis R. 1968. Biologie de la Vigne. Acquisitions récentes et problémes acutels. Paris: Masson et Cie.

    Google Scholar 

  • Dixon R.D., Paiva N.L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097.

    Article  PubMed  CAS  Google Scholar 

  • Hagerman A., Butler L. 1978. Protein precipitation method for quantitative determination of tannins. J. Agric. Food Chem., 26: 809–811.

    Article  CAS  Google Scholar 

  • Janas K.M., Cvikrova M., Pałagiewicz A., Eder J. 2000. Alternations in phenylpropanoid content in soybean roots during low temperature acclimation. Plant Physiol. Biochem. 38: 587–593.

    Article  CAS  Google Scholar 

  • Janas K.M., Cvikrova M., Pał giewicz A., Szafra-ska K., Posmyk M.M. 2002. Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature. Plant Sci. 163: 369–373

    Article  CAS  Google Scholar 

  • Jayaprakasha G.K., Selvi T., Sakariah K.K. 2003. Antibacterial and antioxidant activities of grape (Vitis vinifera) seeds extracts. Food Res. Inter. 36: 117–122.

    Article  CAS  Google Scholar 

  • Jayaprakasha G.K., Singh R.P., Sakariah K.K. 2001. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem., 73: 285–290.

    Article  CAS  Google Scholar 

  • Kennedy J.A., Troup G.J., Pilbrow J.R., Hutton D.R., Hewitt D., Hunter C.R., Ristic R., Iland P.G., Jones G.P. 2000. Development of seed polyphenols in berries from Vitis vinifera L. cv. Shiraz. Aust. J. Grape Wine Res. 6: 244–254.

    Article  CAS  Google Scholar 

  • Kratsch H.A., Wise R.R. 2000. The ultrastructure of chilling stress. Plant Cell Envir. 23: 337–350.

    Article  CAS  Google Scholar 

  • Krygier K., Sosulski F.W., Hogge L. 1982. Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure. J. Agric. Food Chem. 30: 330–334.

    Article  CAS  Google Scholar 

  • Naczk M., Shahidi F. 1989. The effect of methanol-ammonia-water treatment on the content of phenolic acids of canola. Food Chem. 31: 15–164.

    Article  Google Scholar 

  • Nikolayeva M.G. 1977. Factors controlling the seeds dormancy pattern. In: The physiology and biochemistry of seed dormancy and germination, Khan A.A. (Ed) Amsterdam: North-Holland: 51–74.

    Google Scholar 

  • Oszmia ski J., Lamer-Zarawska E. 1993. Wyst - powanie i znaczenie tanin w ro linach leczniczych. Wiad. Zielar., 35: 16–17.

    Google Scholar 

  • Oszmia ski J., Bourzeix M. 1995. Preparation of catechin and procyanidin standards from hawthorn (Crataegus azarolus L.) and pine (Pine mesogeensis fieschi) barks. Pol. J. Food. Nutr. Sci. 4/45: 89–96.

    Google Scholar 

  • Peki B., Kova V., Alonso E., Revilla E. 1998. Study of extraction of proanthocyanidins from grape seeds. Food Chem., 61: 201–206.

    Article  Google Scholar 

  • Price N.J., Van Scoyoc S., Butler L.G. 1978. A critical evaluation of the vanillic reactions an assay for tannin in sorghum grain. J. Agric. Food Chem. 26: 1214–1218.

    Article  CAS  Google Scholar 

  • Rhodes M.J.C., Wooltorton L.S.C. 1977. Changes in tomatoes stored at low temperatures. Trends Plant Sci. 2: 152–159.

    Google Scholar 

  • Rivero R.M., Ruiz J.M., Garcia P.C., Lopez-Lefebre L.R., Sanchez E., Romero L. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160: 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Saito M., Hosoyama H., Ariga T., Kataoka S., Yamaji N. 1998. Antiulcer Activity of grape seed extract and procyanidins. J. Agric. Food Chem., 46: 1460–1464.

    Article  CAS  Google Scholar 

  • Shahidi F. 1997. Natural antioxidants: chemistry, health effect, and applications. AOCS Press, Champaign, Illinois.

    Google Scholar 

  • Sokół-Ł towska A. 1997. Próby opracowania i zastosowania preparatów zwi zków fenolowych wybranych surowców ro linnych jako przeciwutleniaczy. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu. Technologia ywno ci XI, 319: 99–115.

    Google Scholar 

  • Solecka D. 1997. Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiol. Plant 19: 257–268.

    CAS  Google Scholar 

  • Solecka D., Kacperska A. 2003. Phenylpropanoid dificency affects the course of plant acclimation to cold. Physiol. Plant. 119: 253–262.

    Article  CAS  Google Scholar 

  • Soquet J.M., Cheynier V., Brossaud F., Moutounet M. 1996. Polymeric proanthocyanidins from grape skins. Phytochemistry 43: 509–512.

    Article  Google Scholar 

  • Sun B., Leandro C., da Silva J.M.R., Spranger I. 1998. Separation of grape and wine proanthocyanidins according to their degree of polymerization. J. Agric. Food Chem., 46: 1390–1396.

    Article  CAS  Google Scholar 

  • Weidner S., Amarowicz R., Karama M., Fr czek E. 2000. Changes in endogenous phenolic acids during development of Secale cereale caryopses and after dehydration treatment of unripe rye grains. Plant Physiol. Biochem., 38: 595–602.

    Article  CAS  Google Scholar 

  • Weidner S., Fr czek E., Amarowicz R., Abe S. 2001. Alterations in phenolic acids content in developing rye grains in normal environment and during enforcet dehydration. Acta Physiol. Plant. 23: 475–482.

    CAS  Google Scholar 

  • Weidner S., Krupa U., Amarowicz R., Karama M., Abe S. 2002. Phenolic compounds in embryos of triticale caryopses at different stages of development and maturation in normal environment and after dehydration treatment. Euphytica, 126: 115–112.

    Article  CAS  Google Scholar 

  • Weidner S., Paprocka J., Kamieniecki B., Zadernowski R. 1993. The role of phenolic acids in dormancy of barley caryopses. In Pre-Harvest Sprouting in cereals 1992, ed by M.K. Walker-Simmons and J.L. Ried. American Association of Cereal Chemists. St. Paul, Minnesota, USA.

    Google Scholar 

  • Zadernowski R., Kozłowska H. 1983. Phenolic acids in soybean and rapeseed flours. Lebensm. Wiss. Technol. 16: 110–114.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Weidner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wróbel, M., Karama, M., Amarowicz, R. et al. Metabolism of phenolic compounds in Vitis riparia seeds during stratification and during germination under optimal and low temperature stress conditions. Acta Physiol Plant 27, 313–320 (2005). https://doi.org/10.1007/s11738-005-0008-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0008-4

Key words

Navigation