Skip to main content
Log in

The effect of exogenous spermidine on superoxide dismutase activity, H2O2 and superoxide radical level in barley leaves under water deficit conditions

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Barley (Hordeum vulgare) seedlings were treated with spermidine prior to water deficit to determine whether this polyamine is able to affect the activity of superoxide dismutase -SOD (EC 1.15.1.1) responsible for hydrogen peroxide and superoxide radical level.

Short-term dehydration (24h) resulted in decrease of the SOD specific activity and a distinct increase in the superoxide anion and hydrogen peroxide contents. Polyamine treatment caused a substantial reduction in the contents of these two stress-raised reactive oxygen species and thereby lowered the oxidative stress in plant cells. Antioxidant system as an important component of the water-stress-protective mechanism can be changed by polyamines, able to moderate the radical scavenging system and to lessen in this way the oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acar O., Türkan I., Özdemir F. 2001. Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties. Acta. Physiol. Plant. 23: 351–356.

    CAS  Google Scholar 

  • de Agazio M. Zacchini M., Federico R., Grego S. 1995. Putrescine accumulation in maize roots treated with spermidine: evidence for spermidine to putrescine conversion. Plant Sci. 111: 181–185.

    Article  Google Scholar 

  • Ahuja B.S., Kaur K. 1985. Alteration in superoxide dismutase, peroxidase, lipid peroxidation and non-protein SH content in mung bean (Vigna radiata) seedlings subjected to water stress. Indian J. Exp. Biol. 23: 57–59.

    CAS  Google Scholar 

  • Allen R.D. 1995. Dissection of oxidative stress toleramce using transgenic plants. Plant Physiol. 107: 1049–1054.

    PubMed  CAS  Google Scholar 

  • Alscher R.G., Erturk N., Heath L.S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53: 1331–1341.

    Article  PubMed  CAS  Google Scholar 

  • Alscher R.G., Hess J.L. 1993. Antioxidants in higher plants. Boca Raton: CRC Press.

    Google Scholar 

  • Allen R.D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1049–1054.

    PubMed  CAS  Google Scholar 

  • Badiani M., De Biasi M.G., Artemi F. 1990. Catalase, peroxidase and superoxide dismutase activities in seedlings submitted to increasing water deficit. Agrochimica 34: 90–102.

    CAS  Google Scholar 

  • Beauchamp C., Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–278.

    Article  PubMed  CAS  Google Scholar 

  • Besford R.T., Richardson J.L., Campos A.F., Tiburcio A.F. 1993. Effect of polyamines in stabilization of molecular complexes of thylakoid membranes of osmotically stressed oat leaves. Planta 189: 201–206.

    Article  CAS  Google Scholar 

  • Bolkhina O., Virolainen E., Fagerstedt K.V. 2003. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review. Ann. Bot. 91: 179–194.

    Article  CAS  Google Scholar 

  • Bors N., Langebartels C., Michel C., Sanderman H. Jr 1989. Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28: 1589–1595.

    Article  CAS  Google Scholar 

  • Borrell A., Carbonell R., Farras R., Puig-Parellada P., Tiburcio A.F. 1987. Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiol. Plant. 99: 385–390.

    Article  Google Scholar 

  • Bowler Ch., Van Montagu M., Inzé D. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83–116.

    Article  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Bratton D.L. 1994. Polyamine inhibition of transbilayer movements of plasma membrane phospholipids in the erythrocyte ghost. 1994. J. Biol. Chem. 269: 22517–22523.

    PubMed  CAS  Google Scholar 

  • Bouchereau A., Aziz A., Larher F., Martin-Tanguy J. 1999. Polyamines and environmental challenges: recent development. Plant Sci. 140: 103–125.

    Article  CAS  Google Scholar 

  • Chandru H.K., Kim E., Kuk Y., Cho K., Han O. 2003. Kinetics of wound-induced activation of antioxidative enzymes in Oriza sativa: differential activation at different growth stages. Plant Sci. 164: 935–941.

    Article  CAS  Google Scholar 

  • del Río L.A., Corpas F.J., Sandalio L.M., Palma J.M., Gomez M. Barroso J.B. 2002. reactive oxygen species, antioxidant system and nitric oxide in peroxysomes. J. Exp. Bot. 53: 1255–1272.

    Article  PubMed  Google Scholar 

  • Doke N. 1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophtora infestans and the hyphal wall components. Physiol. Plant Pathol. 23: 345–357.

    Article  CAS  Google Scholar 

  • Droillard M.J., Paulin A. 1990. Isozymes of superoxide dismutase in mitochondria and peroxisomes isolated from carnation (Dianthus caryophyllus) during senescence. Plant Physiol. 94: 1187–1192.

    PubMed  CAS  Google Scholar 

  • Elstner E.F. 1991. Mechanisms in oxygen activation in different compartments of plant cells. In: Pell E.J., Steffen K.L., eds. Active oxygen/oxidative stress and plant metabolism. Rockville, MD: American Society of Plant Physiologists, 13–25.

    Google Scholar 

  • Filek M., B czek R., Niewiadomska E., Pilipowicz M., Ko cielniak J. 1997. Effect of high temperature treatment of Vicia faba roots on the oxidative stress enzymes in leaves. Acta Bioch. Pol. 44: 315–322.

    CAS  Google Scholar 

  • Fridovich I. 1986a. Superoxide dismutases. Advances in Enzymology and Related Areas of Molecular Biology 58: 61–97.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I. 1986b. Biological effects of superoxide radical. Arch. Biochem. Biophys. 247: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Flores H.E., Glaston A.W. 1984a. Osmotic stress-induced polyamine accumulation in cereal leaves. I. Physiological parameters of the response. Plant Physiol. 75: 102–109.

    Article  PubMed  CAS  Google Scholar 

  • Flores H.E., Galston A.W. 1984b. Osmotic stress-induced polyamine accumulation in cereal leaves. II. Relation to amino acid pools. Plant Physiol. 75: 110–113.

    PubMed  CAS  Google Scholar 

  • Halliwell B. 1987. Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem. Phys. Lipids 44: 327–340.

    Article  CAS  Google Scholar 

  • Jagtap V., Bhargava S. 1995. Variation in the antioxidant metabolism of drought-tolerant and drought susceptible varieties of Sorghum bicolor (L.) Moench. exposed to high light, low water and high temperature stress. J. Plant Physiol. 145: 195–197.

    CAS  Google Scholar 

  • Kakkar R.K., Sawhney V.K. 2002. Polyamine research in plants — a changing perspective. Physiol. Plant. 116: 281–292.

    Article  CAS  Google Scholar 

  • Kubi J. 2001. Polyamines and “scavenging system”: influence of exogenous spermidine on Halliwell-Asada pathway enzyme activity in barley leaves under water deficit. Acta Physiol. Plant. 23: 335–341.

    Google Scholar 

  • Kubi J. 2003. Polyamines and “scavenging system”: influence of exogenous spermidine on catalase and guaiacol peroxidase activities, and free polyamines level in barley leaves under water deficit. Acta Physiol. Plant. 25: 337–343.

    Google Scholar 

  • León J., Rojo E., Sánchez-Serrano J.J. 2001. Wound signaling in plants. J. Exp. Bot. 52: 1–9.

    Article  PubMed  Google Scholar 

  • Lester G.E. 2000. Polyamines and their cellular anti-senescence properties in honey dew muskmelon fruit. Plant Sci. 160: 105–112.

    Article  CAS  PubMed  Google Scholar 

  • Levine A., Tenhaken R., Dixon R., Lamb C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593.

    Article  PubMed  CAS  Google Scholar 

  • McCord J.M., Fridovich I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049–55.

    PubMed  CAS  Google Scholar 

  • Messner B., Boll M. 1994. Cell suspension cultures of spruce (Picea abies): inactivation of extracellular enzymes by fungal elicitor-induced transient release of hydrogen peroxide. Plant Cell Tissue and Organ Culture 39: 69–78.

    Article  CAS  Google Scholar 

  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 9: 405–410.

    Article  Google Scholar 

  • Navari-Izzo F., Pinzino C., Quartacci M.F., Sgherri C.L.M. 1994. Intracellular membranes: kinetics of superoxide production and changes in thylakoids of resurrection plants upon dehydration and rehydration. Proc. Roy. Soc. Edin. 102: 187–191.

    Google Scholar 

  • Neill S.J., Desikan R., Clarke A., Hurst R.D., Hancock J. 2002. Hydrogen peroxide and nitric oxide as signaling molecules in plants. J. Exp. Bot. 53: 1237–1247.

    Article  PubMed  CAS  Google Scholar 

  • Quartacci M.F., Navari-Izzo F. 1992. Water stress and free radical mediated changes in sunflower seedlings. J. Plant Physiol. 139: 621–625.

    CAS  Google Scholar 

  • Robinson J.M. 1988. Does oxygen photoreduction occur in vivo? Physiol. Plant. 72: 666–680.

    Article  CAS  Google Scholar 

  • Sairam R.K., Srivastava G.C. 2001. Water stress tolerance of wheat (Triticum aestivum L.): Variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. J. Agron. Crop Sci. 186: 63–70

    Article  CAS  Google Scholar 

  • Shen W., Nada K., Tachibana S. 2000. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol. 124: 431–439.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125: 27–58.

    Article  CAS  Google Scholar 

  • Tiburico A.F., Kaur-Sawhney R., Galston A. W. 1990. Polyamine metabolism of plants, in: B.J. Miflin P.J. Lea (eds.), The Biochemistry of Plants, vol. 16, Academic Press, New York, pp. 283–325.

    Google Scholar 

  • Turner L.B., Stewart G.R. 1986. The effect or water stress upon polyamine levels in barley (Hordeum vulgare L.) leaves. J. Exp. Bot. 175: 170–177.

    Article  Google Scholar 

  • Turner L.B., Stewart G.R. 1988. Factors affecting polyamine accumulation in barley (Hordeum vulgare L.) leaf sections during osmotic stress. J. Exp. Bot. 200: 311–316.

    Article  Google Scholar 

  • Takahashi M.A., Asada K. 1983. Superoxide anion permeability of phospholipid membranes and chloroplast thylacoids. Arch. Biochem. Biophys. 226: 558–566.

    Article  PubMed  CAS  Google Scholar 

  • Vranová E., Inzé D., Van Breusegem F. 2002. Signal transduction during oxidative stress. J. Exp. Bot. 372: 1227–1236.

    Article  Google Scholar 

  • Weatherley P.E. 1950. Studies in water relations of cotton plants. I. The field measurement of water deficits in leaves. New Phytol. 49: 81–97.

    Article  Google Scholar 

  • Zhang X., Zhang L., Dong F., Gao J., Galbraith D.W., Song C.P. 2001. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol. 126: 1438–1448.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubi, J. The effect of exogenous spermidine on superoxide dismutase activity, H2O2 and superoxide radical level in barley leaves under water deficit conditions. Acta Physiol Plant 27, 289–295 (2005). https://doi.org/10.1007/s11738-005-0005-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0005-7

Key words

Navigation