Skip to main content
Log in

Desiccation-induced changes in lipid peroxidation, superoxide level and antioxidant enzymes activity in neem (Azadirachta indica A. Juss) seeds

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The freshly harvested mature neem seeds (42.2 % seed moisture content) with 100 % viability deteriorate when naturally desiccated to below 10.9 %. The desiccation-induced loss of viability was closely associated with over accumulation of superoxide anion and lipid peroxidation products both in the embryonic axes and cotyledons. The levels of superoxide anion and lipid peroxidation products were higher in axes compared to cotyledons. Superoxide dismutase activity was not much affected, both in the axes and cotyledons of 100 % viable seeds during desiccation from 42.2 % to 10.9 % seed moisture content. Steep rise in its activity was observed during drying below lowest safe moisture content (LSMC). Activities of catalase and peroxidase exhibited substantially higher levels in the 100 % viable seeds dehydrated up to LSMC. Their activities declined sharply in seeds with water content below LSMC. Impairment of catalase and peroxidase activities possibly lead to enhanced accumulation of reactive oxygen species. The accumulation of superoxide anion, lipid peroxidation and differential expression of superoxide dismutase and catalse/peroxidase activities in response to desiccation (below LSMC) is discussed to explain the intermediate storage physiology of neem seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LSMC:

least safe moisture content

MDA:

malondialdehyde

ROS:

reactive oxygen species

SOD:

superoxide dismutase

POD:

peroxidase

CAT:

catalase

dah:

days after harvest

TBARS:

2-thiobarbituric acid reactive substances

O 2 :

superoxide anion

References

  • Bowler C., Van Montagu M., Inze D. 1992. The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO J. 8: 31–38.

    Google Scholar 

  • Bucharov P., Grantcheff T. 1984. Influence of accelerated and natural ageing on free radical levels in soybean seeds. Physiol. Plant. 60: 53–56.

    Article  Google Scholar 

  • Chaitanya K.S.K. 1997. Loss of viability in sal (Shorea robusta) seeds: A physiological and biochemical approach. Ph.D. thesis, Pt. Ravishankar Shukla University, Raipur, India.

    Google Scholar 

  • Chaitanya K.S.K., Naithani S.C. 1994. Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn. F. New Phytol. 126: 623–627.

    Article  CAS  Google Scholar 

  • Chaitanya K.S.K., Naithani S.C. 1998. Kinetin-mediated prolongation of viability in recalcitrant sal (Shorea robusta Gaertn.f.) seeds at low temperature: Role of kinetin in delaying membrane deterioration during desiccation-induced injury. J. Plant Growth Regul. 17: 63–69.

    Article  CAS  Google Scholar 

  • Chance B., Maehly A.C. 1955. Assay of catalase and peroxidase. In: Methods in Enzymology, vol. 2. Eds. S.P. Colowick and N.O. Kaplan, Academic Press, New York.

    Google Scholar 

  • Chin H.F., Roberts E.H. 1980. Recalcitrant Crop Seeds. Tropical Press: BDH Kuala Lumpur, Malaysia.

    Google Scholar 

  • Corbineau F., Come D. 1989. Germination and storage of recalcitrant seeds of some tropical forest tree species. Ann. des Sci. For. 46: 89–91.

    Article  Google Scholar 

  • Einset E., Clark W. 1958. The enzymatically catalysed released of choline from lecithin. J. Biol. Chem. 231: 703–715.

    PubMed  CAS  Google Scholar 

  • Finch-Savage W.E. 1992. Embryo water status and survival in the recalcitrant species Quercus robur L.: evidence for a critical moisture content. J. Exp. Bot. 43: 663–669.

    Article  Google Scholar 

  • Finch-Savage W.E., Hendry G.A.F., Atherton N.M. 1994. Free radical activity and loss of viability during drying of desiccation-sensitive tree seeds. Proc. of the Royal Soc. of Edinburgh 102B: 257–260.

    Google Scholar 

  • Foster J.G., Hess J.L. 1982. Oxygen effects on maize leaf superoxide dismutase and glutathione reductase. Phytochem. 21: 1527–1532.

    Article  CAS  Google Scholar 

  • Fridovich I. 1986. Biological effects of superoxide radical. Arch. Biochem. Biophys. 247: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I. 1995. Superoxide radical and superoxide dismutases. Ann. Rev. Biochem. 64: 97–112.

    Article  PubMed  CAS  Google Scholar 

  • Gamene C.S., Kraak H.L., van Piljen J.G., de Vos C.H.R. 1996. Storage behaviour of neem (Azadirachta indica) seeds from Burkina Faso. Seed Sci. Technol. 24: 441–448.

    Google Scholar 

  • Gutteridge J.M.C., Halliwell B. 1990. The measurement and mechanism of lipid peroxidation in biological systems. Trends in Biochem. Sci. 15: 129–135.

    Article  CAS  Google Scholar 

  • Halliwell B., Gutteridge J.M.C. 1984. Lipid peroxidation, oxygen radicals, cell damage and antioxidant therapy. Lancet, June 23, pp. 1396–1397.

  • Heath R.L., Packer L. 1968. Photoperoxidation of isolated chloroplasts: Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, G.A.F. 1993. Oxygen, free radical processes and seed longevity. Seed Sci. Res. 3: 141–153.

    CAS  Google Scholar 

  • Hendry G.A.F., Finch-Savage W.E., Thorpe P.C., Atherton N.M., Buckland S.M., Nilsson K.A., Seel W.E. 1992. Free radical processes and loss of seed viability during desiccation in the recalcitrant species Quercus robur L. New Phytol. 122: 273–279.

    Article  CAS  Google Scholar 

  • International Seed Testing Association 1985. Determination of moisture content. Seed Sci. Technol. 13: 338–341.

    Google Scholar 

  • IPGRI-DFSC 1997. Danida Forest Seed Centre Newsletter No. 3. The Project on Handling and Storage of Recalcitrant and Intermediate Tropical Forest Tree Seeds, Humlebaek, Denmark, p. 5.

  • Leprince O., Deltour R., Thorpe P.C., Atherton N.M., Hendry G.A.F. 1990. The role of free radicals and radical processing systems in loss of desiccation tolerance in germinating maize (Zea mays L.). New Phytol. 116: 573–580.

    Article  CAS  Google Scholar 

  • Leprince O., Hendry G.A.F., McKersie B.D. 1993. The mechanisms of desiccation tolerance in developing seeds. Seed Sci. Res. 3: 231–246.

    Google Scholar 

  • Leprince O., van Aelst A.C., Pritchard H.W., Murphy D.J. 1998. Oleosins prevent oil coalescence during seed imbibition as suggested by a low temperature scanning electron microscope study of desiccation-tolerant and sensitive oil seeds. Planta 204: 109–119.

    Article  CAS  Google Scholar 

  • Lowry O.H., Rosenbrough N.J., Farr A. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 104: 265–275.

    Google Scholar 

  • MacRae E.A., Fergusion I.B. 1985. Changes in catalase activity and hydrogen peroxide concentration in plants in response to low temperature. Physiol. Plant. 65: 51–56.

    Article  CAS  Google Scholar 

  • Maithani G.P., Bahuguna V., Rawat M.M.S., Sood O.P. 1989. Fruit maturity and inter related effects of temperature and container on longevity of neem (Azadirachta indica A. Juss) seed. The Ind. For. 115: 89–97.

    Google Scholar 

  • Mankhetkorn S., Abedinzadeh Z., Houee-Levin C. 1994. Antioxidant action of sodium diethyldithiocarbamate: Reaction with hydrogen peroxide and superoxide radical. Free Rad. Biol. Med. 17: 517–527.

    Article  PubMed  CAS  Google Scholar 

  • Marklund S., Marklund G. 1974. Involvement of the superoxide anion radical in the auto-oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469–474.

    Article  PubMed  CAS  Google Scholar 

  • McKersie B.D. 1991. The role of oxygen free radicals in mediating freezing and desiccation stress in plants. In: Active Oxygen/Oxidative Stress and Plant Metabolism, Eds. E.J. Pell and K. Steffen, pp. 107–118.

  • McKersie B.D., Hoekestra F.A., Krieg L.C. 1990. Differences in susceptibility of plant membrane lipids to peroxidation. Biochim. Biophys. Acta 1030: 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Niehaus N.J., Jr. 1978. A proposed role of superoxide anion as biological nucleophile in the de-esterification of phospholipid. Bioorg. Chem. 7: 77–84.

    Article  CAS  Google Scholar 

  • Pan S., Yau Y. 1991. The isozymes of superoxide dismutase in rice. Bot. Bull. Acad. Sinica 32: 253–258.

    CAS  Google Scholar 

  • Priestley D.A. 1986. Seed aging. Implications for seed storage and presence in the soil. Cornell University Press, New York.

    Google Scholar 

  • Priestley D.A., McBride M.B., Leopold C. 1980. Tocopherol and organic free radicals in soybean seeds during natural and accelerated aging. Plant Physiol. 66: 715–719.

    PubMed  CAS  Google Scholar 

  • Pritchard H.W. 1991. Water potential and embryonic axes viability in recalcitrant seeds of Quercus rubra. Ann. Bot. 67: 43–49.

    Google Scholar 

  • Pritchard H. W., Daws M. 1997. Preliminary screening results. In ‘Danida Forest Seed Centre Newsletter no. 2’, The Project on Handling and Storage of Recalcitrant and Intermediate Tropical Forest Tree Seeds, Humlebaek, Denmark, pp. 4–5.

  • Pukacka S. 1991. Changes in membrane lipid components and antioxidant levels during natural ageing of seeds of Acer platanoides. Physiol. Plant. 82: 306–310.

    Article  CAS  Google Scholar 

  • Puntarulo S., Galleano M., Sanchez R.A., Boveri A. 1991. Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination. Biochim. Biophys. Acta 1074: 277–283.

    PubMed  CAS  Google Scholar 

  • Roberts E.H., King M.W., Ellis R.H. 1984. Recalcitrant seeds, their recognition and storage. In: Crop Genetic Resources: Conservation and Evaluation, Eds. J.H.W. Holden and J.T. Williams, George Allen and Unwin, London, pp. 38–52,

    Google Scholar 

  • Sacande M., Van Piljen J.G., de Vos C.H.R., Hoekstra F.A., Bino R.J., Groot S.P.C. 1996. Case study neem (Azadirachta indica A. Juss) seed research. In: Proceedings of Workshop on Improved Methods for Handling and Storage of Intermediate/Recalcitrant Tropical Forest Tree Seeds, 8–10 June, Humlebaek, Denmark.

  • Sangeetha P., Das V.N., Koratkar R., Suryaprabha P. 1990. Increase in free radical generation and lipid peroxidation following chemotherapy in patients with cancer. Free Rad. Biol. Med. 8: 15–19.

    Article  PubMed  CAS  Google Scholar 

  • Senaratna T., McKersie B.D. 1986. Loss of desiccation tolerance during seed germination: a free radical mechanism of injury. In: Membrane Metabolism and Dry Organisms, Ed. A.C. Leopold, Cornell University Press, Ithaca, pp. 85–101.

    Google Scholar 

  • Senaratna T., McKersie B.D., Borochov A. 1987. Desiccation and free radical mediated changes in plant membranes. J. Exp. Bot. 38: 2005–2014.

    Article  CAS  Google Scholar 

  • Singh B.G., Mahadevan N.P., Shanthi K., Manihmuthu L., Geetha S. 1997. Effect of moisture content on the viability and storability of Azadirachta indica A. Juss (neem) seeds. The Ind. For. 123: 631–636.

    Google Scholar 

  • Smirnoff N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125: 27–58.

    Article  CAS  Google Scholar 

  • Stewart R.R.C., Bewley J.D. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol. 65: 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Tsang E.W.T., Bowler C., Herouart D., Vancamp W., Villrroel R., Genetello C., Van Montagu M., Inze D. 1991. Differential regulation of superoxide dismutases in plants exposed to environmental stress. The Plant Cell 3: 783–792.

    Article  PubMed  CAS  Google Scholar 

  • Varghese B. Naithani S.C. 2000. Desiccation induced loss of vigour and viability during storage in neem (Azadirachta indica A. Juss) seeds. Seed Sci. Technol. 28: 485–496.

    Google Scholar 

  • Vertucci C.W., Farrant J.M. 1995. Acquisition and loss of desiccation tolerance. In: Seed development and germination, Eds. J. Kigel and G. Galili, Marcel Dekker Inc., New York, pp. 237–271.

    Google Scholar 

  • Wilson D.O. Jr., McDonald M.B. Jr. 1986. The lipid peroxidation model of seed aging. Seed Sci. Technol. 14: 269–300.

    CAS  Google Scholar 

  • Zhang J., Kirkham M.B. 1994. Drought stress induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant and Cell Physiol. 35: 785–791.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varghese, B., Naithani, S.C. Desiccation-induced changes in lipid peroxidation, superoxide level and antioxidant enzymes activity in neem (Azadirachta indica A. Juss) seeds. Acta Physiol Plant 24, 79–87 (2002). https://doi.org/10.1007/s11738-002-0025-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-002-0025-5

Key words

Navigation