Skip to main content
Log in

Douleur et autisme

Pain and autism

  • Article De Synthèse / Review Article
  • Published:
Douleur et Analgésie

Résumé

Longtemps, on a cru que la personne souffrant d’autisme avait un seuil de douleur plus élevé que la population saine. Pourtant, les études contrôlées en laboratoire ne supportent pas cette conclusion. En fait, ce sont les capacités communicationnelles restreintes qui semblent être à la base de cette croyance. Il reste encore énormément à faire pour assurer un suivi adéquat de la douleur dans l’autisme afin d’offrir un traitement qui soit adapté à cette population en situation de fragilité.

Abstract

It was long believed that a person with autism has a higher pain threshold than healthy population. However, controlled laboratory studies do not support this belief. In fact, it is limited communicative abilities that seem to be the basis for this belief. There is still much to be done to ensure adequate monitoring of pain in autism patients to provide a treatment that is appropriate for this population in fragile situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Aman MG, Arnold LE, Armstrong SC (1999) Review of serotoninergic agents and pervasive behavior in patients with developmental disabilities. Ment Retard Dev Disabil Res Rev 5:279–289

    Article  Google Scholar 

  2. Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31:137–145

    Article  PubMed  CAS  Google Scholar 

  3. Angelogianni P, Gianoulakis C (1989) Ontogeny of the betaendorphin response to stress in the rat: role of the pituitary and the hypothalamus. Neuroendocrinology 50:372–381

    Article  PubMed  CAS  Google Scholar 

  4. Bhanja S, Mohanakumar KP (2010) Early-life treatment of antiserotonin antibodies alters sensitivity to serotonin receptors, nociceptive stimulus and serotonin metabolism in adult rats. Int J Dev Neurosci 28:317–324

    Article  PubMed  CAS  Google Scholar 

  5. Blundell J, Tabuchi K, Bolliger MF, et al (2009) Increased anxiety-like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2. Genes Brain Behav 8:114–126

    Article  PubMed  CAS  Google Scholar 

  6. Chakrabarti S, Fombonne E (2001) Pervasive developmental disorders in preschool children. JAMA 285:3093–3099

    Article  PubMed  CAS  Google Scholar 

  7. Chambers CT, Reid GJ, Craig KD, et al (1998) Agreement between child and parent reports of pain. Clin J Pain 14:336–342

    Article  PubMed  CAS  Google Scholar 

  8. Courchesne E, Lincoln AJ, Kilman BA, Galambos R (1985) Event-related brain potential correlates of the processing of novel visual and auditory information in autism. J Autism Dev Disord 15:55–76

    Article  PubMed  CAS  Google Scholar 

  9. Craig KD, Lilley CM, Gilbert CA (1996) Social barriers to optimal pain management in infants and children. Clin J Pain 12:232–242

    Article  PubMed  CAS  Google Scholar 

  10. Davis E, Fennoy I, Laraque D, et al (1992) Autism and developmental abnormalities in children with perinatal cocaine exposure. J Natl Med Assoc 84:315–319

    PubMed  CAS  Google Scholar 

  11. De Giacomo A, Fombonne E (1998) Parental recognition of developmental abnormalities in autism. Eur Child Adolesc Psychiatry 7:131–136

    Article  PubMed  Google Scholar 

  12. Dickenson AH, Sullivan AF (1987) Evidence for a role of the NMDA receptor in the frequency dependent potential of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropsychopharmacology 26:1235–1238

    CAS  Google Scholar 

  13. Dray A (1995) Inflammatory mediator of pain. Br J Anesth 75:125–131

    CAS  Google Scholar 

  14. Forgas JP, Eich E (2003) Chapter 3: mood, coping and memory. In: Weiener IB, Healy AF, Freedheinm DK, et al (eds) Handbook of psychology: Experimental psychology

  15. Gerra G, Volpi R, Delsignore R, et al (1992) ACTH and betaendorphin responses to physical exercise in adolescent women tested for anxiety and frustration. Psychiatry Res 41:179–186

    Article  PubMed  CAS  Google Scholar 

  16. Green L, Fein D, Modahl C, et al (2001) Oxytocin and autistic disorder: alterations in peptide forms. Biol Psychiatry 50:609–613

    Article  PubMed  CAS  Google Scholar 

  17. Grossman JB, Carter A, Volkmar FR (1997) Social behavior in autism. In: Carter CS, Lederhendler II, Kirkpatrick B (eds) The Integrative Neurobiology of Affiliation. The New York Academy of Sciences, New York, pp 440–454

    Google Scholar 

  18. Hobson RP (1986) The autistic child’s appraisal of expressions of emotion. J Child Psychol Psychiatry 27:321–342

    Article  PubMed  CAS  Google Scholar 

  19. Huber C, Kunz M, Srtelt C, Lautenbacher S (2010) Attentional and emotional mechanisms of pain processing and their related factors: a structural equations approach. Pain Res Manag 15:229–237

    PubMed  Google Scholar 

  20. Hussman JP (2001) Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. J Autism Dev Disord 31:247–248

    Article  PubMed  CAS  Google Scholar 

  21. Jansen LM, Gispen-De Wied CC, Wiegant VM, et al (2006) Autonomic and neuroendocrine responses to psychosocial stressor in adults with autistic spectrum disorder. J Autism Dev Disord 36:891–899

    Article  PubMed  Google Scholar 

  22. Jensen TS (1997) Opioids in the brain: supraspinal mechanisms in pain control. Acta Anaesthesiol Scand 41:132–133

    Article  Google Scholar 

  23. Jonhson CP, Myers SM (2007) Identification and evaluation of children with autism spectrum disorders. Pediatrics 120:1183–1215

    Article  Google Scholar 

  24. Kandel ER, Schwartz JH, Jessell TM (1995) Neurotransmitters: there are a small number of small molecule transmitter substances. In: Kandel ER, Schwartz JH, Jessell TM (eds) Essentials of neural science and behavior. Appleton and Lange, Norwalk, Connecticut, pp 294–297

    Google Scholar 

  25. Kjaer A, Knigg U, Bach FW, Warberg J (1992) Histamine- and stress-induced secretion of ACTH and beta-endorphin: involvement of corticotropin-releasing hormone and vasopressin. Neuroendocrinology 56:419–428

    Article  PubMed  CAS  Google Scholar 

  26. Klintwall L, Gillberg C, Bötle S, Fernell E (2011) Sensory abnormalities in autism. A brief report. J Autism Disabil 32:795–800

    Google Scholar 

  27. Lam KS, Aman MG, Arnold LE (2006) Neurochemical correlates of autistic disorder: a review of the literature. Res Dev Disabil 27:254–289

    Article  PubMed  Google Scholar 

  28. Lee L, Harrington RA, Chang JJ, Connors SL (2008) Increased risk of injury in children with developmental disabilities. Res Dev Disabil 29:247–255

    Article  PubMed  Google Scholar 

  29. Legrain V, Van Damme S, Eccleston C, et al (2009) A neurocognitive model of attention to pain: behavioral and neuroimaging evidence. Pain 144:230–232

    Article  PubMed  Google Scholar 

  30. Levy RA, Proudfit HK (1977) The analgesic action of baclofen [beta (4-chlorophenyl) gamma aminobutyric acid]. J Pharmacol Exp Ther 202:437–445

    PubMed  CAS  Google Scholar 

  31. Mana S, Pallière Martinot ML, Martinot JL (2010) Brain imaging findings in children and adolescents with mental disorders: a cross-sectional review. Eur Psychiatry 25:345–354

    Article  PubMed  CAS  Google Scholar 

  32. Marchand S (2009) Chapitre 1: qu’est-ce que la douleur ? In: Marchand S (ed) Le phénomène de la douleur. Chenelière éducation, Montréal, pp 10–16

    Google Scholar 

  33. McDougle CJ, Naylor ST, Cohen DJ, et al (1996) Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry 53:993–1000

    PubMed  CAS  Google Scholar 

  34. Messmer RL, Nader R, Craig KD (2008) Brief report: judging pain intensity in children with autism undergoing venepuncture: the influence of facial activity. J Autism Dev Disord 38:1391–1394

    Article  PubMed  Google Scholar 

  35. Militreni R, Bravaccio C, Falco C, et al (2000) Pain reactivity in children with autistic disorder. J Headache Pain 1:53–56

    Article  Google Scholar 

  36. Modahl C, Green L, Fein D, et al (1998) Plasma oxytocin levels in autistic children. Biol Psychiatry 43:270–277

    Article  PubMed  CAS  Google Scholar 

  37. Novotny SL, Hollander E, Allen A, et al (2000) Behavioral response to oxytocin challenge in adult autistic disorders. Biol Psychiatry 47:159S

    Article  Google Scholar 

  38. Pernon E, Rattaz C (2003) Les modes d’expression de la douleur chez l’enfant autiste: étude comparée. Médecine et Hygiène, Devenir 15:263–277

    Google Scholar 

  39. Potvin S, Grignon S, Marchand S (2009) Human evidence of supra-spinal modulation role of dopamine on pain perception. Synapse 63:390–402

    Article  PubMed  CAS  Google Scholar 

  40. Prior MR (1979) Cognitive abilities and disabilities in infantile autism: a review. J Abnorm Child Psychol 7:357–380

    Article  PubMed  CAS  Google Scholar 

  41. Samaco RC, Fryer JD, Ren J, et al (2008) A partial loss of function allele of Methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Hum Mol Genet 17:1718–1727

    Article  PubMed  CAS  Google Scholar 

  42. Sandman CA, Datta PC, Barron J, et al (1983) Naloxone attenuates self-abusive behavior in developmentally disabled clients. Appl Res Ment Retard 4:5–11

    Article  PubMed  CAS  Google Scholar 

  43. Schneider T, Labuz D, Przewtocki R (2001) Nociceptive changes in rats after prenatal exposure to valproic acid. Pol J Pharmacol 53:531–544

    PubMed  CAS  Google Scholar 

  44. Schneider T, Przewtocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmaology 30:80–89

    Article  CAS  Google Scholar 

  45. Schneider T, Roman A, Basta-Kaim A, et al (2008) Genderspecific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 33:728–740

    Article  PubMed  CAS  Google Scholar 

  46. Schroeder SR (1988) Neuroleptic medications for persons with developmental disabilities. In: Aman MG, Singh NN (eds) Psychopharmacology of the developmental disabilities. Springer-Verlag, New York, pp 82–100

    Google Scholar 

  47. Shain RJ, Freedman DX (1961) Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. J Pediatr 58:315–320

    Article  Google Scholar 

  48. Silverman JL, Yang M, Turner SM, et al (2010) Low stress reactivity and neuroendocrine factors in the BTBR T+ tf/J mouse model of autism. Neuroscience 171:1197–1208

    Article  PubMed  CAS  Google Scholar 

  49. Singer T, Snozzi R, Bird G, et al (2008) Effects of oxytocin and prosocial behavior on brain responses to direct and vicariously experienced pain. Emotion 8:781–791

    Article  PubMed  Google Scholar 

  50. Smith AJ (1998) The analgesic effects of selective serotonin reuptake inhibitors. J Psycopharmac 12:407–413

    Article  CAS  Google Scholar 

  51. Spitzer RL, Gibbon M, Skodol AE, et al (2000) Trouble autistique. In: Diagnostic and statistical manual of mental disorders, fourth edition-text revision. American Psychiatric Association, Washington DC, pp 81–88

    Google Scholar 

  52. Tordjman S, Anderson GM, Botbol M, et al (2009) Pain reactivity and plasma beta-endorphin in children and adolescents with autistic disorder. Plos One 4:e5289

    Article  PubMed  Google Scholar 

  53. Tordjman S, Anderson GM, McBride PA, et al (1997) Plasma beta-endorphin, adrenocorticotropin hormone, and cortisol in autism. J Child Psychol Psychiatry 38:705–715

    Article  PubMed  CAS  Google Scholar 

  54. Tordjman S, Antoine C, Cohen DJ, et al (1999) Etudes des conduites auto-agressives, de la réactivité à la douleur et de leurs interrelations chez les enfants autistes. Encéphale 25:122–134

    PubMed  CAS  Google Scholar 

  55. Treister R, Pud D, Ebstein RP, et al (2009) Associations between polymorphisms in dopamine neurotransmitter pathway genes and pain response in healthy humans. Pain 147:187–193

    Article  PubMed  CAS  Google Scholar 

  56. Trottier G, Srivastava L, Walker CD (1999) Etiology of infantile autism: a review of recent advances in genetic and neurobiological research. J Psychiatry Neurosci 24:103–115

    PubMed  CAS  Google Scholar 

  57. Van Damme S, Crombez G, Eccleston C (2008) Coping with pain: a motivational perspective. Pain 139:1–4

    Article  PubMed  Google Scholar 

  58. Villemure C, Bushnell MC (2002) Cognitive modulation of pain: how do attention and emotion influence pain processing? Pain 95:195–199

    Article  PubMed  Google Scholar 

  59. Volkmar FR, Lord C, Bailey A (2004) Autism and pervasive development disorder. J Chil Psychol Psychiatry 45:135–170

    Article  Google Scholar 

  60. Yaksh TL, Tyce GM (1979) Microinjection of morphine into the periaqueductal gray evokes the release of serotonin from spinal cord. Brain Res 171:176–181

    Article  PubMed  CAS  Google Scholar 

  61. Yaksh TL, Wilson PR (1979) Spinal serotonin terminal system mediates antinociception. J Pharmacol Exp Ther 208:446–453

    PubMed  CAS  Google Scholar 

  62. Yang J, Yang Y, Chen JM, et al (2007) Central oxytocin enhances antinociception in the rat. Peptides 28:1113–1119

    Article  PubMed  CAS  Google Scholar 

  63. Yirmiya N, Kasari C, Sigman M, Mundy P (1989) Facial expressions of affect in autistic, mentally retarded and normal children. J Child Psychol Psychiatry 30:725–735

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Lévesque, I. Gaumond or S. Marchand.

About this article

Cite this article

Lévesque, M., Gaumond, I. & Marchand, S. Douleur et autisme. Douleur analg 24, 165–170 (2011). https://doi.org/10.1007/s11724-011-0264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11724-011-0264-6

Mots clés

Keywords

Navigation