Skip to main content
Log in

Mechanical properties characterization of different types of masonry infill walls

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

It is remarkable, the recent advances concerning the development of numerical modeling frameworks to simulate the infill panels’ seismic behavior. However, there is a lack of experimental data of their mechanical properties, which are of full importance to calibrate the numerical models. The primary objective of this paper is to present an extensive experimental campaign of mechanical characterization tests of infill masonry walls made with three different types of masonry units: lightweight vertical hollow concrete blocks and hollow clay bricks. Four different types of experimental tests were carried out, namely: compression strength tests, diagonal tensile strength tests, and flexural strength tests parallel and perpendicular to the horizontal bed joints. A total amount of 80 tests were carried out and are reported in the present paper. The second objective of this study was to compare the mechanical properties of as-built and existing infill walls. The results presented and discussed herein, will be in terms of strain-stress curves and damages observed within the tests. It was observed a fragile behavior in the panels made with hollow clay horizontal bricks, without propagation of cracks. The plaster increased the flexural strength by 57%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

f c,m :

mortar compressive strength

f t,m :

mortar flexural strength

f c :

masonry infill panels compressive strength

f c,mean :

masonry infill panels mean compressive strength

f c,k :

masonry infill panels characteristic compressive strength

E mean :

mean masonry infill walls elasticity modulus

μ :

average value

σ :

standard deviation

CoV :

coefficient of Variation

R w :

masonry unit sound insulation resistance

R t :

masonry unit thermal resistance

f c,unit :

masonry unit compressive strength perpendicular to the holes

S s :

masonry infill panels shear stress

S s,mean :

masonry infill panels mean shear stress

γ :

mhear straining

G mean :

mean masonry infill panels rigidity modulus

f b,parallel :

masonry infill panels flexural strength parallel to the horizontal bed joints

f b,parallel,mean :

mean masonry infill panels flexural strength parallel to the horizontal bed joints

f b,parallel,k :

characteristic masonry infill panels flexural strength parallel to the horizontal bed joints

f b,perpendicular :

masonry infill panels flexural strength perpendicular to the horizontal bed joints

f b,perpendicular,mean :

mean masonry infill panels flexural strength perpendicular to the horizontal bed joints

f b,perpendicular,k :

characteristic masonry infill panels flexural strength perpendicular to the horizontal bed joints

References

  1. Furtado A, Rodrigues H, Arêde A, Varum H. Out-of-plane behavior of masonry infilled RC frames based on the experimental tests available: A systematic review. Construction and Building Materials, 2018, 168: 831–848

    Google Scholar 

  2. Di Domenico M, Ricci P, Verderame GM. Experimental assessment of the influence of boundary conditions on the out-of-plane response of unreinforced masonry infill walls. Journal of Earthquake Engineering, 2018 (in press)

    Google Scholar 

  3. Kadysiewski S, Mosalam K M. Modeling of unreinforced masonry infill walls considering in-plane and out-of-plane interaction. In: The 11th Canadian Masonry Symposium. Toronto: Pacific Earthquake Engineering Research Center, 2009

    Google Scholar 

  4. Furtado A, Rodrigues H, Arêde A, Varum H. Simplified macromodel for infill masonry walls considering the out-of-plane behaviour. Earthquake Engineering & Structural Dynamics, 2016, 45(4): 507–524

    Article  Google Scholar 

  5. Asteris P G, Cavaleri L, Di Trapani F, Tsaris A K. Numerical modelling of out-of-plane response of infilled frames: State of the art and future challenges for the equivalent strut macromodels. Engineering Structures, 2017, 132: 110–122

    Article  Google Scholar 

  6. Di Trapani F, Shing P B, Cavaleri L. Macroelement model for inplane and out-of-plane responses of masonry infills in frame structures. Journal of Structural Engineering, 2018, 144(2): 04017198

    Article  Google Scholar 

  7. Singhal V, Rai D C. Suitability of half-scale burnt clay bricks for shake table tests on masonry walls. Journal of Materials in Civil Engineering, 2014, 26(4): 644–657

    Article  Google Scholar 

  8. Ferretti D, Michelini E, Rosati G. Mechanical characterization of autoclaved aerated concrete masonry subjected to in-plane loading: Experimental investigation and FE modeling. Construction and Building Materials, 2015, 98: 353–365

    Article  Google Scholar 

  9. Cavaleri L, Papia M, Macaluso G, Di Trapani F, Colajanni P. Definition of diagonal Poisson’s ratio and elastic modulus for infill masonry walls. Materials and Structures, 2014, 47(1): 239–262

    Article  Google Scholar 

  10. Knox C L, Dizhur D, Ingham J M. Experimental study on scale effects in clay brick masonry prisms and wall panels investigating compression and shear related properties. Construction and Building Materials, 2018, 163: 706–713

    Article  Google Scholar 

  11. CEN. EN 1052-1: Methods of Test for Masonry, Part 1: Determination of Compressive Strength. London: British Standards Institution, 1998

    Google Scholar 

  12. ASTM. E 519-02. Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages. West Conshohcken: American Society for Testing and Materials, 2002

    Google Scholar 

  13. RILEM. RILEM TC 76-LUM. Diagonal Tensile Strength of Small Walls Specimens. RILEM Publications SARL, 1994

    Google Scholar 

  14. CEN. EN 1052-2: Methods of Test for Masonry, Determination of Flexural Strength. London: British Standards Institution, 1999

    Google Scholar 

  15. CEN. EN 1015-11: Methods of Test for Mortar for Masonry, Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. London: British Standards Institution, 2004

    Google Scholar 

  16. Pereira P, Pereira M, Ferreira J, Lourenço P. Behavior of masonry infill panels in RC frames subjected to in plane and out of plane loads. In: The 7th Conference on Analytical Models and New Concepts in Concrete and Masonry Structure Cracow. Poland, 2012

    Google Scholar 

  17. Sahlin S. Structural Masonry. New Jersey: Prentice-Hall Inc., 1971

    Google Scholar 

  18. Sinha B P, Pedreschi R. Compressive strength and some elastic properties of brickwork. International Journal of Masonry Construction, 1983, 3(1): 19–27

    Google Scholar 

  19. Bartolomé S A, Quiun D, Barr K, Pineda C. Seismic Reinforcement of Confined Masonry Walls made with Hollow Bricks using Wire Meshes. In: The 15th World Conference on Earthquake Engineering. Lisbon, 2012

    Google Scholar 

  20. Hendry A W. Structural Masonry. London: Macmillan Education Ltd., 1990

    Google Scholar 

  21. Paulay T, Priestley M J N. Seismic design of RC and masonry buildings. New York: Wiley Interscience, 1992

    Google Scholar 

  22. European Committee for Standardisation. Eurocode 6: Part 1-1–General Rules for Buildings–Rules for Reinforced and Unreinforced Masonry. Brussels: European Committee for Standardisation, 2005

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support financially support by: Project POCI-01-0145-FEDER-007457-CONSTRUCT-Institute of R&D in Structures and Construction funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds through FCTFundacão para a Ciencia e a Tecnologia, namely through the research project P0CI-01-0145-FEDER-016898-ASPASSI-Safety Evaluation and Retrofitting of Infill masonry enclosure Walls for Seismic demands. The authors would like to acknowledge the technicians of the Laboratory of Earthquake and Structural Engineering (LESE), Mr. Valdemar Luis, Mr. Guilherme Nogueira and Mr. Nuno Pinto for their support in the experimental activity reported in this paper. Finally, the authors want to acknowledge to Artebel and Preceram for the provision of all the concrete blocks and bricks used in the experimental tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furtado, A., Rodrigues, H., Arêde, A. et al. Mechanical properties characterization of different types of masonry infill walls. Front. Struct. Civ. Eng. 14, 411–434 (2020). https://doi.org/10.1007/s11709-019-0602-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-019-0602-y

Keywords

Navigation