Skip to main content
Log in

Shanghai center project excavation induced ground surface movements and deformations

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

Empirical data on deep urban excavations can provide designers a significant reference basis for assessing potential deformations of the deep excavations and their impact on adjacent structures. The construction of the Shanghai Center involved excavations in excess of 33-m-deep using the top-down method at a site underlain by thick deposits of marine soft clay. A retaining system was achieved by 50-m-deep diaphragm walls with six levels of struts. During construction, a comprehensive instrumentation program lasting 14 months was conducted to monitor the behaviors of this deep circular excavation. The following main items related to ground surface movements and deformations were collected: (1) walls and circumferential soils lateral movements; (2) peripheral soil deflection in layers and ground settlements; and (3) pit basal heave. The results from the field instrumentation showed that deflections of the site were strictly controlled and had no large movements that might lead to damage to the stability of the foundation pit. The field performance of another 21cylindrical excavations in top-down method were collected to compare with this case through statistical analysis. In addition, numerical analyses were conducted to compare with the observed data. The extensively monitored data are characterized and analyzed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ou C Y, Liao J T, Lin H D. Performance of diaphragm wall constructed using the top-down method. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 798–808

    Article  Google Scholar 

  2. Liu G B, Ng C W, Wang Z W. Observed performance of a deep multistrutted excavation in Shanghai soft clays. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(8): 1004–1013

    Article  Google Scholar 

  3. Tan Y, Wang D. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. II: top-down construction of the peripheral rectangular pit. Journal of Geotechnical and Geoenvironmental Engineering, 2013a, 139(11): 1894–1910

    Google Scholar 

  4. Whittle A J, Corral G, Jen L C, Rawnsley R P. Predication and performance of deep excavations for Courthouse Station, Boston. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(4): 04014123

    Article  Google Scholar 

  5. Orazalin Z Y, Whittle A J, Olsen M B. Three-dimensional analysis of excavation support system for the Stata Center Basement on the MIT campus. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(7): 05015001

    Article  Google Scholar 

  6. Tanner Blackburn J, Finno R J. Three-dimensional responses observed in an internally braced excavation in soft clay. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(11): 1364–1373

    Article  Google Scholar 

  7. Hashash Y M A, Osouli A, Marulanda C. Central artery/tunnel project excavation induced ground deformations. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9): 1399–1406

    Article  Google Scholar 

  8. Tan Y, Wang D. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. I: bottom-up construction of the central cylindrical shaft. Journal of Geotechnical and Geoenvironmental Engineering, 2013b, 139(11): 1875–1893

    Google Scholar 

  9. Wong I, Poh T, Chuah H. Performance of excavations for depresses expressway in Singapore. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(7): 617–625

    Article  Google Scholar 

  10. Hsieh P G, Ou C Y. Shape of ground surface settlement profiles caused by excavation. Canadian Geotechnical Journal, 1998, 35(6): 1004–1017

    Article  Google Scholar 

  11. Long M. Database for retaining wall and ground movements due to deep excavations. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(3): 203–224

    Article  Google Scholar 

  12. Moormann C. Analysis of wall and ground movements due to deep excavations in soft soil based on a new worldwide database. Soil and Foundation, 2004, 44(1): 87–98

    Article  Google Scholar 

  13. O’Rourke T D, McGinn A J. Lessons learned for ground movements and soil stabilization from the Boston Central Artery. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(8): 966–989

    Article  Google Scholar 

  14. Wang J H, Xu Z H, Wang W D. Wall and ground movements due to deep excavations in Shanghai soft soils. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7): 985–994

    Article  Google Scholar 

  15. Tan Y, Wei B. Observed behaviors of a long and deep excavation constructed by cut-and-cover technique in Shanghai soft clay. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 69–88

    Article  Google Scholar 

  16. Tan Y, Wang D. Structural behaviors of large underground earthretaining systems in Shanghai I: unpropped circular diaphragm wall. Journal of Performance of Constructed Facilities, 2015a, 29(2): 04014058

    Article  Google Scholar 

  17. Tan Y, Wang D. Structural behaviors of large underground earthretaining systems in Shanghai. II: multipropped rectangular diaphragm wall. Journal of Performance of Constructed Facilities, 2015b, 29(2): 04014059

    Google Scholar 

  18. Shanghai Construction and Management Commission. Code for Investigation of Geotechnical Engineering (DGJ08-37-2002), Shanghai: Jian Zhu Jian Cai Ye Shi Chang Guan Li Zong Zhan, 2002 (in Chinese)

  19. Xu Y S, Shen S L, Du Y J. Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures. Engineering Geology, 2009, 109(3–4): 241–254

    Article  Google Scholar 

  20. Clough G W, O’Rourke T D. Construction induced movements of in-situ walls. Geotechnical Special publication: Design and performance of earth retaining structures (GSP25), ASCE, Reston, VA, 1990

    Google Scholar 

  21. Kung G T C, Juang C H, Hsiao E C L, Hashash Y M A. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 731–747

    Article  Google Scholar 

  22. Liu K X. Three dimensional analysis of deep excavation in soft clay. M.Eng. thesis, National University of Singapore, 1995

    Google Scholar 

  23. Lee F, Yong K, Quan K, Chee K. Effect of corners in strutted excavations: field monitoring and case histories. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(4): 339–349

    Article  Google Scholar 

  24. Liu G B, Jiang R J, Ng C, Hong Y. Deformation characteristics of a 38m deep excavation in soft clay. Canadian Geotechnical Journal, 2011, 48(12): 1817–1828

    Article  Google Scholar 

  25. Peck R B. Deep excavation and tunneling in soft grund. In: Proceedings of the 7th International Conference of Soil Mechanics and Foundation Engineering, Mexico City, 1969, 225–281

    Google Scholar 

Download references

Acknowledgements

The field monitoring measurements used in this paper were made available to the writers through the efforts of many organizations and individuals involved with the construction and inspection of the foundation pit of the Shanghai Center project. Special thanks to SGIDI for facilitating access to field data. In addition, the writers would like to acknowledge the support of Ms. Yashuang Bai and Mr. Yuxia Ji for data compilation and figures processing. Any views and opinions expressed in this case study are those of the writers and do not necessarily represent the views of the organizations or other individuals responsible for the design and construction of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guolin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Zhang, J., Liu, H. et al. Shanghai center project excavation induced ground surface movements and deformations. Front. Struct. Civ. Eng. 12, 26–43 (2018). https://doi.org/10.1007/s11709-017-0439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-017-0439-1

Keywords

Navigation