Skip to main content
Log in

Static-based early-damage detection using symbolic data analysis and unsupervised learning methods

  • Research Article
  • Special Column on Civil Structure Vibration Based Health and Safety Monitoring
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

A large amount of researches and studies have been recently performed by applying statistical and machine learning techniques for vibration-based damage detection. However, the global character inherent to the limited number of modal properties issued from operational modal analysis may be not appropriate for early-damage, which has generally a local character.

The present paper aims at detecting this type of damage by using static SHM data and by assuming that early-damage produces dead load redistribution. To achieve this objective a data driven strategy is proposed, consisting of the combination of advanced statistical and machine learning methods such as principal component analysis, symbolic data analysis and cluster analysis.

From this analysis it was observed that, under the noise levels measured on site, the proposed strategy is able to automatically detect stiffness reduction in stay cables reaching at least 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu X, Shenton H W. Damage identification based on dead load redistribution methodology. Journal of Structural Engineering, 2006, 132(8): 1254–1263

    Article  Google Scholar 

  2. Teughels A, De Roeck G. Damage detection and parameter identification by finite element model updating. Rev Eur Génie Civ, 2005, 9(1): 109–158

    Article  Google Scholar 

  3. Rytter A. Vibration Based Inspection of Civil Engineering Structures. Aalborg University, 1993

    Google Scholar 

  4. Doebling S W, Farrar C R, Prime M B, Shevitz D W. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review. Los Alamos, USA, 1996

    Google Scholar 

  5. Sohn H, Farrar C, Hemez F M, Shunk D D, Stinemates DW, Nadler B R. A Review of Structural Health Monitoring Literature: 1996–2001. Los Alamos, USA, 2004

    Google Scholar 

  6. Alvandi A, Crémona C. Assessment of vibration-based damage identification techniques. Journal of Sound and Vibration, 2006, 292(1–2): 179–202

    Article  Google Scholar 

  7. Posenato D, Kripakaran P, Inaudi D, Smith I F C. Methodologies for model-free data interpretation of civil engineering structures. Computers & Structures, 2010, 88(7–8): 467–482

    Article  Google Scholar 

  8. Nair K K, Kiremidjian A S, Law K H. Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure. Journal of Sound and Vibration, 2006, 291(1–2): 349–368

    Article  Google Scholar 

  9. Moyo P, Brownjohn J M W. Detection of anomalous structural behaviour using wavelet analysis. Mechanical Systems and Signal Processing, 2002, 16(2–3): 429–445

    Article  Google Scholar 

  10. E. Diday and Noirhomme-Fraiture. Symbolic Data Analysis and the SODAS Software. Chicester: John Wiley and Sons, 2008, 445

    MATH  Google Scholar 

  11. Cury A, Crémona C. Assignment of structural behaviours in longterm monitoring: Application to a strengthened railway bridge. Structural Health Monitoring, 2012, 11(4): 422–441

    Article  Google Scholar 

  12. Oh C K, Sohn H. Damage diagnosis under environmental and operational variations using unsupervised support vector machine. Journal of Sound and Vibration, 2009, 325(1–2): 224–239

    Article  Google Scholar 

  13. Hua X G, Ni Y Q, Ko J M, Wong K Y. Modeling of temperature — frequency correlation using combined principal component analysis and support vector regression technique. Journal of Computing in Civil Engineering, 2007, 21(2): 122–135

    Article  Google Scholar 

  14. Zhou H F, Ni Y Q, Ko J M. Constructing input to neural networks for modelling temperature-caused modal variability: Mean temperatures, effective temperatures, and principal components of temperatures. Engineering Structures, 2010, 32(6): 1747–1759

    Article  Google Scholar 

  15. Mata J. Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models. Engineering Structures, 2011, 33(3): 903–910

    Article  Google Scholar 

  16. Ni Y Q, Hua X G, Fan K Q, Ko J M. Correlating modal properties with temperature using long-term monitoring data and support vector machine technique. Engineering Structures, 2005, 27(12): 1762–1773

    Article  Google Scholar 

  17. Posenato D. Model-Free Data Interpretation for Continuous Monitoring of Complex Structures. École Polytechnique Fédérale de Lausanne, 2009

    Google Scholar 

  18. Cury A. Téchniques D’Anormalité Appliquées a la Surveillance de Santé Structurale. Université Paris-Est, 2010

    Google Scholar 

  19. Yan A, Kerschen G, De Boe P, Golinval J C. Structural damage diagnosis under varying environmental conditions—Part I: A linear analysis. Mechanical Systems and Signal Processing, 2005, 19(4): 865–880

    Article  Google Scholar 

  20. Bellino A, Fasana A, Garibaldi L, Marchesiello S Ã. PCA-based detection of damage in time-varying systems. Mechanical Systems and Signal Processing, 2010, 24(7): 2250–2260

    Article  Google Scholar 

  21. Zhou H F, Ni Y Q, Ko J M. Structural damage alarming using autoassociative neural network technique: Exploration of environmenttolerant capacity and setup of alarming threshold. Mechanical Systems and Signal Processing, 2011, 25(5): 1508–1526

    Article  Google Scholar 

  22. Hsu T Y, Loh C H. Damage detection accommodating nonlinear environmental effects by nonlinear principal component analysis. Structural Control and Health Monitoring, 2010, 17(3): 338–354

    Google Scholar 

  23. Mujica L, Rodellar J, Fernandez A, Guemes A. Q-statistic and T2-statistic PCA-based measures for damage assessment in structures. Structural Health Monitoring, 2011, 10(5): 539–553

    Article  Google Scholar 

  24. da Silva S, Dias Júnior M, Lopes Junior V, Brennan M J. Structural damage detection by fuzzy clustering. Mechanical Systems and Signal Processing, 2008, 22(7): 1636–1649

    Article  Google Scholar 

  25. Sohn H, Kim S D, Harries K. Reference-Free Damage Classification Based on Cluster Analysis. Comput Civ Infrastruct Eng, 2008, 23(5): 324–338

    Article  Google Scholar 

  26. Cury A, Crémona C, Diday E. Application of symbolic data analysis for structural modification assessment. Engineering Structures, 2010, 32(3): 762–775

    Article  Google Scholar 

  27. Santos J, Orcesi A D, Silveira P, Guo W. Real time assessment of rehabilitation works under operational loads. In: Proceedings of the ICDS12 — International Conference on Durable Structures: From construction to rehabilitation. 2012

    Google Scholar 

  28. Hua X G, Ni Y Q, Chen Z Q, Ko J M. Structural damage detection of cable-stayed bridges using changes in cable forces and model updating. Journal of Structural Engineering, 2009, 135(9): 1093–1106

    Article  Google Scholar 

  29. Hu X, Shenton H W III. Damage identification based on dead load redistribution effect of measurement error. Journal of Structural Engineering, 2006, 132(8): 1264–1273

    Article  Google Scholar 

  30. Jolliffe I T. Principal Component Analysis. 2nd ed. Aberdeen: Springer, 2002, 518

    MATH  Google Scholar 

  31. Billard L, Diday E. Symbolic Data Analysis. Chichester: John Wiley and Sons, 2006, 52(2): 321

    MathSciNet  Google Scholar 

  32. Theodoridis S, Koutroumbas K. Pattern Recognition. 4th ed. London: Elsevier, 2009, 961

    Google Scholar 

  33. Ichino M, Yaguchi H. Generalized Minkowski metrics for mixed feature-type data analysis. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(4): 698–708

    Article  MathSciNet  Google Scholar 

  34. Gowda K C, Diday E. Symbolic clustering using a new dissimilarity measure. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 24(6): 567–578

    Google Scholar 

  35. Hastie T. The Elements of Statistical Learning, Data Mining, Inference and Prediction. 2nd ed. Stanford, USA: Springer, 2011, 763

    Google Scholar 

  36. Milligan G, Cooper M. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 1985, 50(2): 159–179

    Article  Google Scholar 

  37. Santos J, Silveira P. A SHM framework comprising real time data validation. In: Proceedings of IALCCE 2012-3rd International Symposium on Life Cycle Civil engineering. 2012, 2

    Google Scholar 

  38. Santos J, Silveira P, Santos L O, Calado L. Monitoring of road structures—real time acquisition and control of data. In: Proceedings of the 16th IRF World Road Meeting. Lisbon, May, 2010

    Google Scholar 

  39. Santos J, Orcesi A D, Silveira P, Pina C. Damage Detection under Environmental and Operational Loads on Large Span Bridges. In: V Congresso brasileiro de Pontes e Estruturas — Soluções Inovadores para Projeto. Execuçao e Manutençao, 2012

    Google Scholar 

  40. Caetano E, Cunha Á, Gattulli V, Lepidi M. Cable-deck dynamic interactions at the international Guadiana Bridge on-site measurements and finite element modelling. Structural Control and Health Monitoring, 2008, 15(3): 237–264

    Article  Google Scholar 

  41. Massey F J Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 1951, 46(253): 68–78

    Article  MATH  Google Scholar 

  42. Jackson J E. A User’s Guide to Principal Components. Wiley-Interscience, 1991, 43(6): 641

    Google Scholar 

  43. Jackson D. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology, 1993, 74(8): 2204–2214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Cremona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, J.P., Cremona, C., Orcesi, A.D. et al. Static-based early-damage detection using symbolic data analysis and unsupervised learning methods. Front. Struct. Civ. Eng. 9, 1–16 (2015). https://doi.org/10.1007/s11709-014-0277-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-014-0277-3

Keywords

Navigation