Skip to main content
Log in

Prediction of the shear wave velocity V S from CPT and DMT at research sites

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

The paper examines the correlations to obtain rough estimates of the shear wave velocity V S from non-seismic dilatometer tests (DMT) and cone penetration tests (CPT). While the direct measurement of V S is obviously preferable, these correlations may turn out useful in various circumstances. The experimental results at six international research sites suggest that the DMT predictions of V S from the parameters I D (material index), K D (horizontal stress index), M DMT (constrained modulus) are more reliable and consistent than the CPT predictions from q c (cone resistance), presumably because of the availability, by DMT, of the stress history index K D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marchetti S, Monaco P, Totani G, Marchetti D. In Situ Tests by Seismic Dilatometer (SDMT). In: Proceedings of the From Research to Practice in Geotechnical Engineering, ASCE Geotech. Spec. Publ. No. 180 (honoring J.H. Schmertmann), 2008, 292–311

    Chapter  Google Scholar 

  2. Robertson P K. Interpretation of in-situ tests-some insights. Mitchell Lecture. In: Proceedings of the 4th International Conference on Geotechnical and Geophysical Site Characterization (ISC’4). Porto de Galinhas, Pernambuco, Brazil, September, 2012

  3. Hegazy Y A, Mayne P W. Statistical correlations between Vs and CPT data for different soil types. In: Proceedings of the Symposium on Cone Penetration Testing (CPT’95). Swedish Geotechnical Society Linköping, 1995, 2: 173–178.

    Google Scholar 

  4. Simonini P, Cola S. On the use of the piezocone to predict the maximum stiffness of Venetian soils. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(4): 378–382

    Article  Google Scholar 

  5. Andrus R D, Mohanan N P, Piratheepan P, Ellis B S, Holzer T L. Predicting shear-wave velocity from cone penetration resistance. In: Proceedings of the 4th International Conference on Earthquake Geotechnical Engineering. Thessaloniki, Greece, 2007

    Google Scholar 

  6. Madiai C, Simoni G. Shear wave velocity-penetration resistance correlation for Holocene and Pleistocene soils of an area in central Italy. In: Viana da Fonseca A and Mayne P W, eds. Ge-otechnical and Geophysical Site Characterization. Proceedings of the 2nd International Conference on Site Characterization. Porto, 2004

    Google Scholar 

  7. Bouckovalas G, Kalteziotis N, Sabatakakis N, Zervogiannis H. Shear wave velocity in a very soft clay-measurements and correlations. In: Proceedings of the 12th International Conference Soil Mechanics Foundation Engineering (ICSMFE). Rio de Janeiro, Brazil, 1989,191–194.

    Google Scholar 

  8. Marchetti S. In Situ Tests by Flat Dilatometer. Jnl GED, ASCE, 1980, 106,GT3: 299–321.

    Google Scholar 

  9. ASTM D6635-01 (2001, 2007). Standard Test Method for Performing the Flat Plate Dilatometer. Book of Standards, 14

    Google Scholar 

  10. Eurocode 7 (1997 & 2007). Geotechnical Design Part 2: Ground Investigation and Testing. EN 1997-2: 2007

    Google Scholar 

  11. Marchetti S, Monaco P, Totani G, Calabrese M. The flat dilatometer test (DMT) in soil investigations. A Report by the ISSMGE Committee TC16. May 2001, 41. Reprinted in Proceedings of the 2nd International Conference on the Flat Dilatometer, Washington D C, 2006, 7–48

    Google Scholar 

  12. Hepton P. Shear wave velocity measurements during penetration testing. In: Proceedings of the Penetration Testing in the UK. ICE, 1988, 275–278

    Google Scholar 

  13. Martin G K, Mayne P W. Seismic flat dilatometer in Piedmont residual soils. In: Proceedings of the 1st International Conference on Site Characterization (ISC’98). Atlanta, 1988, 2: 837–843

    Google Scholar 

  14. Mayne PW, Schneider J A, Martin G K. Small- and large-strain soil properties from seismic flat dilatometer tests. In: Proceedings of the 2nd International Symposium on Pre-Failure Deformation Characteristics of Geomaterials. Torino, 1999, 1: 419–427

    Google Scholar 

  15. Monaco P, Marchetti S, Totani G, Marchetti D. Interrelationship between small strain modulus G0 and operative modulus. In: Proceedings of the International Conference on Performance-Based Design in Earthquake Geotechnical Engineering (IS-Tokyo 2009). Tsukuba, Japan, 2009, 1315–1323

    Google Scholar 

  16. Powell J J M, Butcher A P. Small strain stiffness assessments from in situ tests. In: Proceedings of the 2nd International Conference on Geotechnical Site Characterization (ISC’2). Porto, Portugal, 2004, 2: 1717–1722

    Google Scholar 

  17. Monaco P, Totani G, Amoroso S, Totani F, Marchetti D. Site characterization by seismic dilatometer (SDMT) in the city of L’Aquila. Rivista Italiana di Geotecnica. Anno XLVIII, 2013, (3) (in press)

    Google Scholar 

  18. Hryciw R D. Small-strain-shear modulus of soil by dilatometer. ASCE Jnl GE, 1990, 116(11): 1700–1716

    Article  Google Scholar 

  19. Lunne T, Lacasse S, Rad N S. State of the art report on in situ testing of soils. In: Proceedings of the XII ICSMFE, Rio de Janeiro, 1989, 4: 2339–2403

    Google Scholar 

  20. US DOT-Briaud J L, Miran J. The Flat Dilatometer Test. Departm of Transportation-Fed Highway Administr, Washington, D C, Publ No. FHWA-SA-91-044, Feb, 1992, 102

    Google Scholar 

  21. Tanaka H, Tanaka M. Characterization of sandy soils using CPT and DMT. Soils and Foundations. 1998, 38(3): 55–65

    Article  Google Scholar 

  22. Sully J P, Campanella R G. Correlation of maximum shear modulus with DMT test results in sand. In: Proceedings of the XII ICSMFE. Rio de Janeiro, 1989, 1, 339–343.

    Google Scholar 

  23. Baldi G, Bellotti R, Ghionna V, Jamiolkowski M, Lo Presti D C F. Modulus of sands from CPT’s and DMT’s. In: Proceedings of the XII ICSMFE. Rio de Janeiro, 1989, 1: 165–170.

    Google Scholar 

  24. Schneider J A, McGillivray A V, Mayne PW. Evaluation of SCPTU intra-correlations at sand sites in the Lower Mississippi River valley, USA. In: Proceedings of the 2nd International Conference on Geotechnical Site Characterization (ISC’2). Porto, Portugal, 2004, 1: 1003–1010

    Google Scholar 

  25. Marchetti S. Sensitivity of CPT and DMT to stress history and aging in sands for liquefaction assessment. In: Proceedings of the CPT 2010 International Symposium Huntington Beach. California, 2010

    Google Scholar 

  26. Schmertmann J H. (1984). Comparing DMT with CPT in NC/OC Sand Bucket Tests. DMT Digest No. 4. GPE Inc, Gainesville, Fl, USA, 1984

    Google Scholar 

  27. Baligh M M, Scott R F. Quasi static deep penetration in clays. ASCE Jnl GE, 1975, 101(No. GT11): 1119–1133

    Google Scholar 

  28. Jamiolkowski M, Lo Presti D C F. DMT research in sand. What can be learned from calibration chamber tests. In: Proceedings of the 1st International Conference on Site Characterization (ISC’98). Atlanta, Oral presentation, 1998

    Google Scholar 

  29. Lee M, Choi S, Kim M, Lee W. Effect of stress history on CPT and DMT results in sand. J Engineering Geology, 2011, 117(3–4): 259–265

    Article  Google Scholar 

  30. Monaco P, Amoroso S, Marchetti S, Marchetti D, Totani G, Cola S, Simonini P. Overconsolidation and stiffness of venice lagoon sands and silts from SDMT and CPTU. Journal of Geotechnical and Geoenvironmental Engineering, May 14 online publishing, 2013

    Google Scholar 

  31. Amoroso S. Prediction of the shear wave velocity Vs from CPT and DMT. In: Cui Y J, eds. Proceedings of the 5th International Young Geotechnical Engineers’ Conference-5th iYGEC 2013. The authors and IOS Press, 2013

    Google Scholar 

  32. Simonini P. Characterization of the Venice lagoon silts from in-situ tests and the performance of a test embank-ment. In: Viana da Fonseca A, Mayne P W, eds. Ge-otechnical and Geophysical Site Characterization, Proceedings of the 2nd International Conference on Site Characterization. Porto, Rotterdam: Millpress, 2004, 1: 187–207

    Google Scholar 

  33. Gottardi G, Tonni L. A comparative study of piezo-cone tests on the silty soils of the Venice lagoon (Treporti Test Site). In: Viana da Fonseca A, Mayne P W, eds. Ge-otechnical and Geophysical Site Characterization, Proceedings of the 2nd International Conference on Site Characterization. Porto, Rotterdam: Millpress, 2004, 2: 1643–1649

    Google Scholar 

  34. Marchetti S, Monaco P, Calabrese M, Totani G. DMT-predicted vs measured settlements under a full-scale instrumented embankment at Treporti (Venice, Italy). In: Viana da Fonseca A, Mayne PW, eds. Ge-otechnical and Geophysical Site Characterization, Proceedings of the 2nd International Conference on Site Characterization. Porto, Rotterdam: Millpress, 2004, 2: 1511–1518.

    Google Scholar 

  35. McGillivray A, Mayne P W. Seismic piezocone and seismic flat dilatometer tests at Treporti. In: Viana da Fonseca A, Mayne P W, eds. Ge-otechnical and Geophysical Site Characterization, Proceedings of the 2nd International Conference on Site Characterization. Porto, Rotterdam: Millpress, 2004, 2: 1695–1700

    Google Scholar 

  36. Simonini P, Ricceri G, Cola S. Geotechnical char-acterization and properties of the Venice lagoon hetero-geneus silts. In: Proceedings of the 2nd International Workshop on Characterization and Engineering Properties of Natural Soils. Singapore, London: Taylor & Francis, 2006, 4: 2289–2328.

    Google Scholar 

  37. Robertson P K. CPT-DMT correlations. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1762–1771

    Article  Google Scholar 

  38. Boylan N, Randolph M F, Low H E. Enahncement of the ball penetrometer test with pore pressure measurements. ISFOG 2010, Perth, Western Australia, 2010

    Google Scholar 

  39. Amoroso S. G-Γ decay curves by seismic dilatometer (SDMT). Dissertation for the Doctoral Degree, L’Aquila: University of L’Aquila, 2011

    Google Scholar 

  40. Schneider J A, Fahey M, Lehane B M. Characterization of an unsaturated sand deposit by in situ testing. In: Proceedings of the 3rd International Conference on Site Characterization-ISC’3. 2008, 633–638

    Google Scholar 

  41. Lehane B M, Fahey M. (2004). Using SCPT and DMT data for settlement prediction in sand. In: Viana da Fonseca A, Mayne P W, eds. Ge-otechnical and Geophysical Site Characterization, Proceedings of the 2nd International Conference on Site Characterization. Porto, Rotterdam: Millpress, 2004, 2: 1673–1679

    Google Scholar 

  42. Fahey M, Schneider J A, Lehane B M. Self-boring pressuremeter testing in Spearwood dune sands. Australian Geomechanics J, 2007, 42(4): 57–71

    Google Scholar 

  43. Lehane B M, Mathew G, Stewart D. A laboratory investigation of the upper horizons of the Perth/Guildford formation in Perth CBD. Australian Geomechanics Journal, 2007, 42(3): 87–100

    Google Scholar 

  44. Fahey M, Lehane B M, Stewart D. Soil stiffness for shallow foundation design in the Perth CBD. Australian Geomechanics J, 2003, 38(3): 61–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amoroso Sara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sara, A. Prediction of the shear wave velocity V S from CPT and DMT at research sites. Front. Struct. Civ. Eng. 8, 83–92 (2014). https://doi.org/10.1007/s11709-013-0234-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-013-0234-6

Keywords

Navigation