Skip to main content
Log in

Lateral displacement of soft ground under vacuum pressure and surcharge load

  • Research Article
  • Published:
Frontiers of Architecture and Civil Engineering in China Aims and scope Submit manuscript

Abstract

Surcharge load (e.g. embankment fill) will induce settlement and outward lateral displacement, while vacuum pressure will induce settlement and inward lateral displacement of a ground. Ideally, combination of surcharge load and vacuum pressure can reduce or minimize the lateral displacement. Laboratory large scale model (length: 1.50 m, width: ∼0.62 m, height: 0.85 m) tests and finite element analyses (FEA) were conducted to investigate the main influencing factors on lateral displacement of a soft clayey ground under the combination of vacuum pressure and surcharge load. For the conditions investigated, the results indicate that the outward lateral displacement increases with the increase of the ratio of surcharge load to vacuum pressure (RL) and the loading rate of the surcharge load (LR). Also, it is shown that for a given RL and LR condition, lateral displacement reduces with the increase of the initial undrained shear strength (S u) of the ground. To predict the lateral displacement of a ground under the combination of surcharge load and vacuum pressure, the loading conditions in terms of RL and LR, and S u value of the ground have to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chai J C, Carter J P, Hayashi S. Vacuum consolidation and its combination with embankment loading. Canadian Geotechnical Journal, 2006, 43(10): 985–996

    Article  Google Scholar 

  2. Chu J, Yan S W, Yang H. Soil improvement by the vacuum preloading method for an oil storage station. Géotechnique, 2000, 50(6): 625–632

    Article  Google Scholar 

  3. Indraratna B N, Rujikiatkamjorn C. McIntosh G, Balasubramaniam A S. Vacuum consolidation effects on lateral yield of soft clays as applied to road and railway embankment. In: Proceedings of the International Symposium on Geotechnical Engineering, Ground Improvement and Geosynthetics for Human Security and Environmental Preservation. Bangkok, Thailand, 2007, 31–62

  4. Shang J Q, Tang M, Miao Z. Vacuum preloading consolidation of reclaimed land: a case study. Canadian Geotechnical Journal, 1998, 35(4–6): 740–749

    Article  Google Scholar 

  5. Chai J C, Miura N, Bergado D T. Preloading clayey deposit by vacuum pressure with cap-drain: analyses versus performance. Geotextiles and Geomembranes, 2008, 26(3): 220–230

    Article  Google Scholar 

  6. Fujii A, Tanaka H, Tsuruya H, Shinsha H. Field test on vacuum consolidation method by expecting upper clay layer as sealing up material. In: Proceedings of the Symposium on Recent Development about Clayey Deposit-From Microstructure to Soft Ground Improvement. Japanese Geotechnical Society, 2002, 269–274 (in Japanese).

  7. Britto A M, Gunn M J. Critical State Soil Mechanics via Finite Elements. London: McGraw Hill, 1987

    MATH  Google Scholar 

  8. Chai J C, Miura N, Sakajo S, Bergado D T. Behavior of vertical drain improved subsoil under embankment loading. Soils and Foundations, Tokyo, 1995, 35(4): 49–61

    Google Scholar 

  9. Roscoe K H, Burland J B. On the generalized stress-strain behavior of ‘wet’ clay. In: Heyman J, Leckie F A, eds. Engineering plasticity, Cambridge: Cambridge University Press, 1968, 535–609

    Google Scholar 

  10. Taylor D W. Fundamentals of Soil Mechanics. New York: Wiley, 1948

    Google Scholar 

  11. Chai, J C, Miura N, Kirekawa T, Hino T. Optimum PVD installation depth for two-way drainage deposit. Geomechanics and Engineering, An International Journal, 2009, 1(3): 179–192

    Google Scholar 

  12. Japan Road Association. Guidelines and counter-measure for road and earthworks construction. Japan Road Association, Japan, 1986 (in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Chun Chai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, CY., Chai, JC. Lateral displacement of soft ground under vacuum pressure and surcharge load. Front. Archit. Civ. Eng. China 5, 239–248 (2011). https://doi.org/10.1007/s11709-011-0110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-011-0110-1

Keywords

Navigation