Skip to main content
Log in

Application of nanotechnologies in the energy sector: A brief and short review

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Energy is of great importance in human life because of its benefits as the main resource for human activity. According to International Energy Agency (IEA), energy demands are expected to continue increasing until 2030. Because energy demand will never decrease, it is necessary to develop modern technology, such as nanobased technology, in order to obtain a more effective and efficient process to produce more energy. The application of nano technology or nano material in the field of energy, which involves lithium-ion battery, fuel cell, light emitting diode (LED), ultra-capacitor, and solar cell (including Grätzel cell), is a hot topic in many scientific researches. Unfortunately, its current development is hampered by the expensive cost of production compared to conventional technologies. Therefore, priority should be given to nano technology in the energy sector order to obtain higher efficiency, lower production cost, and easier in its application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Energy Information Administration (EIA). International energy outlook. 2007-07, http://www.eia.doe.gov/oiaf/ieo/index.html

  2. Suehiro S. Energy Intensity of GDP as an Index of Energy Conservation. Institute of Energy Economics Japan Report. 2007

  3. Berger M. Nanotechnology applications could provide the required energy breakthroughs. 2012-06-05, http://www.nanowerk.com/spotlight/spotid=7424.php

  4. Joachim C. To be nano or not to be nano? Nature Materials, 2005, 4(2): 107–109

    Article  Google Scholar 

  5. Yunus I S, Harwin, Kurniawan A, Adityawarman D, Indarto A. Nanotechnologies in water and air pollution treatment. Environmental Technology Reviews, iFirst, 2012, 1–13

  6. Hartono. Prospek penelitian dan pengembangan teknologi ketenagalistrikan dan energi baru terbarukan berbasis nanoteknologi. Mineral Energy, 2010, 8(1): 10–16

    Google Scholar 

  7. Luther W. Application of Nano-Technologies in the Energy Sector. Germany: Hessian Ministry of Economy, Transport, Urban and Regional Development, 2008

    Google Scholar 

  8. Tatsumisago M. Solid-state lithium batteries using glass electrolytes. 2012-10, http://rm1.cc.lehigh.edu:8080/dept/IMI/pdf_DC07/Tatsumisago.pdf

  9. Zhao X, Hayner C M, Kung M C, Kung H H. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithiumion batteries. Advanced Energy Materials, 2011, 1(6): 1079–1084

    Article  Google Scholar 

  10. Bullis K. Higher-capacity lithium-ion batteries technology review. 2010-06-11, http://www.technologyreview.com/energy/17553/?a=f

  11. Liang S, Zhu X, Lian P, Yang W, Wang H. Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries. Journal of Solid State Chemistry, 2011, 184(6): 1400–1404

    Article  Google Scholar 

  12. Schroder K. Understanding the formation and composition of the solid-electrolyte interphase at silicon surfaces. 2012-10, http://webb.cm.utexas.edu/research/research_SEI.html

  13. Nazri G A, Pistoia G. Lithium Batteries: Science and Technology. New York: Springer, 2003, 621–637

    Book  Google Scholar 

  14. Rice B M. Jow T R. Energy&Energetics. U.S. Army Research Laboratory, 2012, 5

  15. Smithsonian Institution. Fuel cell basics. 2011-11-24 http://americanhistory.si.edu/fuelcells/basics.htm

  16. Antolini E, Perez J. The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: from the size to the shape of metal nanostructures. Journal of Materials Science, 2011, 46(13): 4435–4457

    Article  Google Scholar 

  17. Guo S, Sun S. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. Journal of the American Chemical Society, 2012, 134(5): 2492–2495

    Article  Google Scholar 

  18. Dai L, Chang D W, Baek J B, Lu W. Carbon nanomaterials for advanced energy conversion and storage. Small, 2012, 8(8): 1130–1166

    Article  Google Scholar 

  19. Chu K L, Gold S, Subramanian V, Lu C, Shannon M A, Masel R I. A nanoporous silicon membrane electrode assembly for on-chip micro fuel cell applications. Journal of Microelectromechanical Systems, 2006, 15(3): 671–677

    Article  Google Scholar 

  20. Bagotsky V S. Fuel Cells in Electrochemistry Encyclopedia. Yeager Center for Electrochemical Sciences (YCES) Report, 2009

  21. Sun S, Jaouen F, Dodelet J P. Controlled growth of Pt nanowires on carbon nanospheres and their enhanced performance as electrocatalysts in PEM fuel cells. Advanced Materials (Deerfield Beach, Fla.), 2008, 20(20): 3900–3904

    Article  Google Scholar 

  22. Thomas S, Zalbowitz M. Fuel Cells-Green Power. New Mexico: Los Alamos National Laboratory, 2011

    Google Scholar 

  23. Bewag A. Energy moving into the future. The fuel cell: A technical report. 2012-10, http://www.fuelcellpark.com/projekt/down/Br_BZ_en.pdf

  24. Wiberg E, Goeltzer H, Bauer R Z. Naturforsch. Teil B, 1951, 6: 394–395

    Google Scholar 

  25. Bogdanović B. Catalytic synthesis of organolithium and organomagnesium compounds and of lithium and magnesium hydrides—Applications in organic synthesis and hydrogen storage. Awandte Chemie International Edition in English, 1985, 24(4): 262–273

    Article  Google Scholar 

  26. Zaluska A, Zaluski L, Ström-Olsen J O. Nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds, 1999, 288(1,2): 217–225

    Article  Google Scholar 

  27. Ding R G, Lu G Q, Yan Z F, Wilson M A. Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. Journal of Nanoscience and Nanotechnology, 2001, 1(1): 7–29

    Article  Google Scholar 

  28. Nishihara H, Kyotani T. Templated nanocarbons for energy storage. Advanced Materials, 2012, 24(33): 4473–4498

    Article  Google Scholar 

  29. Guay P. Hydrogen storage. 2011-11-16, http://www.nanotechnologies.qc.ca/projects/hydrogen/hydrogen_storage#more-3

  30. Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S, Heben M J. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386(6623): 377–379

    Article  Google Scholar 

  31. Chen P, Wu X, Lin J, Tan K L. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science, 1999, 285(5424): 91–93

    Article  Google Scholar 

  32. Dillon A C, Gennett T, Alleman J L, Jones K M, Parilla P A, Heben M J. Carbon nanotube materials for hydrogen storage. In: Proceedings of the 1999 US DOE Hydrogen Program Review II. Golden: National Renewable Energy Laboratory, 1999

    Google Scholar 

  33. Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M, Dresselhaus M S. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 1999, 286(5442): 1127–1129

    Article  Google Scholar 

  34. Ye Y, Ahn C C, Witham C, Fultz B, Liu J, Rinzler A G, Colbert D, Smith K A, Smalley R E. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters, 1999, 74(16): 2307–2309

    Article  Google Scholar 

  35. Wu X B, Chen P, Lin J, Tan K L. Hydrogen uptake by carbon nanotubes. International Journal of Hydrogen Energy, 2000, 25(3): 261–265

    Article  Google Scholar 

  36. Dillon A C, Gennett T, Alleman J L, Jones K M, Parilla P A, Heben M J. Carbon nanotube materials for hydrogen storage. Proceedings of the 2000 US DOE Hydrogen Program Review, II. Golden: National Renewable Energy Laboratory, 2000

    Google Scholar 

  37. Hirscher M, Becher M, Haluska M, Dettlaff-Weglikowska U, Quintel A, Duesberg G S, Choi YM, Downes P, Hulman M, Roth S, Stepanek I, Bernier P. Hydrogen storage in sonicated carbon materials. Applied Physic A, 2001, 72(2): 129–132

    Article  Google Scholar 

  38. Hirscher M, Becher M, Haluska M, Quintel A, Skakalova V, Choi Y M, Dettlaff-Weglikowska U, Roth S, Stepanek I, Bernier P, Leonhardt A, Fink J. Hydrogen storage in carbon nanostrutures. Journal of Alloys and Compounds, 2002, 330–332: 654–658

    Article  Google Scholar 

  39. Yang R T. Hydrogen storage by alkali-doped carbon nanotubes revisited. Carbon, 2000, 38(4): 623–626

    Article  Google Scholar 

  40. Pinkerton F E, Wicke B G, Olk C H, Tibbetts G G, Meisner G P, Meyer M S, Herbst J F. Thermogravimetric measurement of hydrogen absorption in alkali-modified carbon materials. Journal of Physical Chemistry B, 2000, 104(40): 9460–9467

    Article  Google Scholar 

  41. Chambers A, Park C, Baker R T K, Rodriguez N M. Hydrogen storage in graphite nanofibers. Journal of Physical Chemistry B, 1998, 102(22): 4253–4256

    Article  Google Scholar 

  42. Haisen. LED working principle. 2011-11-18, http://www.hs-lighting.com/FAQ/7.html

  43. Rusponi S, Kern K. Frontiers in Nanoscience. Chapter 14. 2012-10-13, http://ipn2.epfl.ch/lns/lectures/nanoscience

  44. Hiskey D. How an LED works. 2011-11-19, http://www.todayifoundout.com/index.php/2010/03/how-an-led-works

  45. Bowers M J 2nd, McBride J R, Rosenthal S J. White-light emission from magic-sized cadmium selenide nanocrystals. Journal of the American Chemical Society, 2005, 127(44): 15378–15379

    Article  Google Scholar 

  46. PlasmaChem GmbH. Quantenpunkten. “Echt” grunes und sonnenahnliches licht aus LEDs. Nanotechnologie Actuell, 2012-11-20, http://www.plasmachem.com/led-true-green_de.html

  47. ScienceDaily. Nanotechnology being used in next-generation LED lights. 2011-11-20, http://www.sciencedaily.com/releases/2007/03/070319175617.htm

  48. Auvray A, Pigeon S, Izquierdo R, Desjardins P, Martel R. Carbon nanotube sheets as electrodes in organic light-emitting diodes. Applied Physics Letters, 2006, 88(18): 183104–183106

    Article  Google Scholar 

  49. Wang Z B, Helander MG, Qiu J, Puzzo D P, Greiner MT, Hudson Z M, Wang S, Liu Z W, Lu Z H. Unlocking the full potential of organic light emitting diodes on flexible plastic. Nature Photonics, 2011, 5(12): 753–757

    Article  Google Scholar 

  50. Levenstein S. OLED television wallpaper gives you a room with a view. 2012-10-13, http://inventorspot.com/articles/oled_television_wallpaper_gives_you_room_view_24270

  51. Martens R. Samsung AMOLED. 2012-10-13, http://www.oled-info.com/samsung-oled

  52. LEDs Magazine. Researchers develop all-white OLEDs, hybrid LEDs. 2012-10-13, http://ledsmagazine.com/news/6/6/21

  53. Schindall J. The charge of the ultracapacitors. IEEE Spectrum, 2007, 44(11): 42–46

    Article  Google Scholar 

  54. Stauffer NW. Saying goodbye to batteries. 2012-10-13, http://mitei. mit.edu/news/saying-goodbye-batteries

  55. Institute of Science in Society (ISIS). Quantum dots and ultraefficient solar cells? 2011-11-13, http://www.i-sis.org.uk/QDAUESC.php

  56. Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science, 2011, 334(6062): 1530–1533

    Article  Google Scholar 

  57. Tiwari G N, Mishra R K. Advanced Renewable Energy Sources. Royal Society of Chemistry, 2011, 121

  58. Green M A. Consolidation of thin-film photovoltaic technology: the coming decade of opportunity. Progress in Photovoltaics: Research and Applications, 2006, 14(5): 383–392

    Article  Google Scholar 

  59. Sánchez C V. Thin film nanocrystalline silicon solar cells obtained by hot-wire CVD. Dissertation for the Doctoral Degree. Universitat de Barcelona, 2001

  60. Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 2011, 19(7): 894–897

    Article  Google Scholar 

  61. Gohary H E. Development of low-temperature epitaxial silicon films and application to solar cells. Dissertation for the Doctoral Degree. University of Waterloo, 2010

  62. Sullivan P, Schumann S, Da Campo R, Howells T, Duraud A, Shipman M, Hatton R A, Jones T S. Ultra-high voltage multijunction organic solar cells for low-power electronic applications. Advanced Energy Materials, online October 1, 2012

  63. Perez R, Perez M. A fundamental look at energy reserves for the planet. 2012-10-13, http://www.asrc.cestm.albany.edu/perez/Kit/pdf/a-fundamental-look-at%20the-planetary-energy-reserves.pdf

  64. Chen F F. An Indispensable Truth: How Fusion Power Can Save the Planet. New York: Springer, 2011

    Book  Google Scholar 

  65. Grätzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344

    Article  Google Scholar 

  66. Gleue A D. How does the Grätzel Solar Cell work? 2012-06-05, http://teachers.usd497.org/agleue/Gratzel_solar_cell assets/How does a GratzelSolar Cell work.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonius Indarto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christian, F., Edith, Selly et al. Application of nanotechnologies in the energy sector: A brief and short review. Front. Energy 7, 6–18 (2013). https://doi.org/10.1007/s11708-012-0219-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-012-0219-5

Keywords

Navigation