Skip to main content

Advertisement

Log in

Developments in semiconductor thermoelectric materials

  • Feature Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

A surge in interest in developing alternative renewable energy technologies has been observed in recent years. In particular, thermoelectrics has drawn attention because thermoelectric effects enable direct conversion between thermal and electrical energy, and provide power generation and refrigeration alternatives. During the past decade, the performance of thermoelectric materials has been considerably improved; however, many challenges continue to exist. Developing thermoelectric materials with superior performance means tailoring interconnected thermoelectric physical parameters-electrical conductivities, Seebeck coefficients, and thermal conductivities for a crystalline system. The objectives of this paper are to introduce the recent developments in semiconductor thermoelectric materials, and briefly summarize the applications of such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referencees

  1. Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: A new class of thermoelectric materials. Science, 1996, 272(5266): 1325–1328

    Google Scholar 

  2. Nolas G, Morelli D, Tritt T. Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annual Review of Materials Science, 1999, 29(1): 89–116

    Google Scholar 

  3. Nolas G S, Cohn J L, Slack G A, Schujman S B. Semiconducting Ge clathlates: Promising candidate for thermoelectric applications. Applied Physics Letters, 1998, 73(2): 178–180

    Google Scholar 

  4. Rowe D. CRC Handbook of Thermoelectrics. Boca Raton, New York, London, Tokyo: CRC Press, 1995

    Google Scholar 

  5. Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B: Condensed Matter, 1993, 47(19): 12727–12731

    Google Scholar 

  6. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602

    Google Scholar 

  7. Harman T C, Taylor P J, Walsh M P, LaForge B E. Quantum dot superlattice thermoelectric materials and devices. Science, 2002, 297(5590): 2229–2232

    Google Scholar 

  8. Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638

    Google Scholar 

  9. Lan Y, Poudel B, Ma Y, Wang D, Dresselhaus M S, Chen G, Ren Z. Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Letters, 2009, 9(4): 1419–1422

    Google Scholar 

  10. Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould RW, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters, 2008, 8(12): 4670–4674

    Google Scholar 

  11. Minnich A, Dresselhaus M, Ren Z, Chen G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy & Environmental Science, 2009, 2(5): 466–479

    Google Scholar 

  12. Kanatzidis M. Nanostructured thermoelectrics: The new paradigm? Chemistry of Materials, 2009, 22(3): 648–659

    Google Scholar 

  13. Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461

    Google Scholar 

  14. Yim W M, Fitzke E V, Rosi F D. Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300 K. Journal of Materials Science, 1966, 1(1): 52–65

    Google Scholar 

  15. Yim W M, Fitzke E V. The effects of growth rate on the thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudoternary alloys. Journal of the Electrochemical Society, 1968, 115(5): 556–560

    Google Scholar 

  16. Borkowski K, Przyluski J. Investigation of vacuum deposition of Bi2Te3-based thermoelectric materials. Materials Research Bulletin, 1987, 22(3): 381–387

    Google Scholar 

  17. Chizhevskaya S, Shelimova L. Electroactive and electroinactive dopants in Bi2Te3 and their interaction with antisite defects. Inorganic Materials, 1995, 31(9): 1083–1095

    Google Scholar 

  18. Horák J, Cermák K, Koudelka L. Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. Journal of Physics and Chemistry of Solids, 1986, 47(8): 805–809

    Google Scholar 

  19. Chung D Y, Hogan T P, Rocci-Lane M, Brazis P, Ireland J R, Kannewurf C R, Bastea M, Uher C, Kanatzidis M G. A new thermoelectric material: CsBi4Te6. Journal of the American Chemical Society, 2004, 126(20): 6414–6428

    Google Scholar 

  20. Desai C, Soni P, Bhavsar S. Creep activation energy of flow process in Bi2Te2.8Se0.2 single crystals. Bulletin of Materials Science, 1999, 22(1): 21–23

    Google Scholar 

  21. Suna Z M, Hashimoto H, Keawprak N, Ma A B, Li L F, Barsoum M W. Effect of rotary-die equal channel angular pressing on the thermoelectric properties of a (Bi,Sb)2Te3 alloy. Journal of Materials Research, 2005, 20(4): 895–903

    Google Scholar 

  22. Ji X H, Zhao X B, Zhang Y H, Lu B H, Ni H L. Synthesis and properties of rare earth containing Bi2Te3 based thermoelectric alloys. Journal of Alloys and Compounds, 2005, 387(1-2): 282–286

    Google Scholar 

  23. Yang J, Chen R, Fan X, Zhu W, Bao S, Duan X. Microstructure control and thermoelectric properties improvement to n-type bismuth telluride based materials by hot extrusion. Journal of Alloys and Compounds, 2007, 429(1–2): 156–162

    Google Scholar 

  24. Hong S J, Lee Y S, Byeon J W, Chun B. Optimum dopant content of n-type 95% Bi2Te3 + 5% Bi2Se3 compounds fabricated by gas atomization and extrusion process. Journal of Alloys and Compounds, 2006, 414(1–2): 146–151

    Google Scholar 

  25. Kim S, Yin F, Kagawa Y. Thermoelectricity for crystallographic anisotropy controlled Bi-Te based alloys and p-n modules. Journal of Alloys and Compounds, 2006, 419(1–2): 306–311

    Google Scholar 

  26. Kunjomana A, Chandrasekharan K. Dislocation and microindentation analysis of vapour grown Bi2Te3 − x Sex whiskers. Crystal Research and Technology, 2008, 43(6): 594–598

    Google Scholar 

  27. Zhao L D, Zhang B P, Li J F, Zhang H L, Liu W S. Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sciences, 2008, 10(5): 651–658

    Google Scholar 

  28. Xie W, Tang X, Yan Y, Zhang Q, Tritt TM. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Applied Physics Letters, 2009, 94(10): 102111

    Google Scholar 

  29. Cao Y, Zhao X, Zhu T, Zhang X B, Tu J P. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Applied Physics Letters, 2008, 92(14): 143106

    Google Scholar 

  30. Orihashi M, Noda Y, Chen L-D, Goto T, Hirai T. Effect of tin content on thermoelectric properties of p-type lead tin telluride. Journal of Physics and Chemistry of Solids, 2000, 61(6): 919–923

    Google Scholar 

  31. Jovovic V, Thiagarajan S J, Heremans J P, Komissarova T, Khokhlov D, Nicorici A. Low temperature thermal, thermoelectric, and thermomagnetic transport in indium rich Pb1 − x SnxTe alloys. Journal of Applied Physics, 2008, 103(5): 053710

    Google Scholar 

  32. Gelbstein Y, Dashevsky Z, Dariel M P. Powder metallurgical processing of functionally graded p-Pb1 − x SnxTe materials for thermoelectric applications. Physica B, Condensed Matter, 2007, 391(2): 256–265

    Google Scholar 

  33. Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554–557

    Google Scholar 

  34. Li H, Cai K F, Wang H F, Wang L, Yin J L, Zhou C W. The influence of co-doping Ag and Sb on microstructure and thermoelectric properties of PbTe prepared by combining hydrothermal synthesis and melting. Journal of Solid State Chemistry, 2009, 182(4): 869–874

    Google Scholar 

  35. Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G. Cubic AgPbmSbTe2 + m : bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818–821

    Google Scholar 

  36. Slack G A, Hussain M A. The maximum possible conversion efficiency of silicon-germanium thermoelectric generators. Journal of Applied Physics, 1991, 70(5): 2694–2718

    Google Scholar 

  37. Yildiz M, Dost S. A continuum model for the liquid phase diffusion growth of bulk SiGe single crystals. International Journal of Engineering Science, 2005, 43(13–14): 1059–1080

    Google Scholar 

  38. Yonenaga I, Akashi T, Goto T. Thermal and electrical properties of Czochralski grown GeSi single crystals. Journal of Physics and Chemistry of Solids, 2001, 62(7): 1313–1317

    Google Scholar 

  39. Schilz J, Romanenko V N. Bulk growth of silicon-germanium solid solutions. Journal of Materials Science Materials in Electronics, 1995, 6(5): 265–279

    Google Scholar 

  40. Goldsmid H J. Introduction to Thermoelectricity. Berlin: Springer Verlag, 2009

    Google Scholar 

  41. Rowe D M, Shukla V, Savvides N.Phonon scattering at grain boundaries in heavily doped fine-grained silicon-germanium alloys. Nature, 1981, 290(5809): 765–766

    Google Scholar 

  42. Dismukes J P, Ekstrom L, Steigmeier E F, Kudman I, Beers D S. Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300 K. Journal of Applied Physics, 1964, 35(10): 2899–2907

    Google Scholar 

  43. Xu Y-D, Xu G-Y, Ge C-C. Improvement in thermoelectric properties of n-type Si95Ge5 alloys by heavy multi-dopants. Scripta Materialia, 2008, 58(12): 1070–1073

    Google Scholar 

  44. Wang XW, Lee H, Lan Y C, Zhu G H, Joshi G, Wang D Z, Yang J, Muto A J, Tang MY, Klatsky J, Song S, Dresselhaus MS, Chen G, Ren Z F. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Applied Physics Letters, 2008, 93(19): 193121

    Google Scholar 

  45. Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould RW, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters, 2008, 8(12): 4670–4674

    Google Scholar 

  46. Lee H, Vashaee D, Wang D Z, Dresselhaus M S, Ren Z F, Chen G. Effects of nanoscale porosity on thermoelectric properties of SiGe. Journal of Applied Physics, 2010, 107(9): 094308

    Google Scholar 

  47. Sales B C, Mandrus D, Chakoumakos B C, Keppens V, Thompson J R. Filled skutterudite antimonides: Electron crystals and phonon glasses. Physical Review B, 1997, 56: 15081–15089

    Google Scholar 

  48. Kleinke H. New bulk materials for thermoelectric power generation: Clathrates and complex antimonides. Chemistry of Materials, 2010, 22(3): 604–611

    Google Scholar 

  49. Fleurial J, Caillat T, Borshchevsky A. Skutterudites: An update. In: Proceedings of the XVI International Conference on Thermoelectrics. Dresden: Germany, 1997, 1–11

    Google Scholar 

  50. Liu W, Zhang B, Li J, Zhang H L, Zhao L D. Enhanced thermoelectric properties in CoSbTe alloys prepared by mechanical alloying and spark plasma sintering. Journal of Applied Physics, 2007, 102(10): 103717

    Google Scholar 

  51. Liu W, Zhang B, Zhao L, Li J F. Improvement of Thermoelectric Performance of CoSb3 − x Tex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb. Chemistry of Materials, 2008, 20(24): 7526–7531

    Google Scholar 

  52. Bai S Q, Pei Y Z, Chen L D, Zhang W Q, Zhao X Y, Yang J. Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12. Acta Materialia, 2009, 57(11): 3135–3139

    Google Scholar 

  53. Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D, Williams S G K, Rowe D M, Bryan J D, Stucky G D. Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30. Journal of Applied Physics, 2006, 99(2): 23708/1–23708/5

    Google Scholar 

  54. Shi L H, Yao D L, Zhang G, Li BW. Large thermoelectric figure of merit in Si1 − xGex nanowires. Applied Physics Letters, 2010, 96(17): 173108

    Google Scholar 

  55. Zhou M, Li J F, Kita T. Nanostructured AgPbmSbTem + 2 system bulk materials with enhanced thermoelectric performance. Journal of the American Chemical Society, 2008, 130(13): 4527–4532

    Google Scholar 

  56. Quarez E, Hsu K F, Pcionek R, Frangis N, Polychroniadis E K, Kanatzidis M G. Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPbmSbTe2 + m . The myth of solid solutions. Journal of the American Chemical Society, 2005, 127(25): 9177–9190

    Google Scholar 

  57. Androulakis J, Hsu K F, Pcionek R, Kong H, Uher C, D’Angelo J J, Downey A, Hogan T, Kanatzidis M G. Nanostructuring and High Thermoelectric Efficiency in p-Type Ag(Pb1 − y Sny)mSbTe2 + m . Advanced Materials (Deerfield Beach, Fla.), 2006, 18(9): 1170–1173

    Google Scholar 

  58. Poudeu P F P, D’Angelo J, Downey A D, Short J L, Hogan T P, Kanatzidis M G. High thermoelectric figure of merit and nanostructuring in bulk p-type Na1 − x PbmSbyTem + 2. Angewandte Chemie International Edition, 2006, 45(23): 3835–3839

    Google Scholar 

  59. Poudeu P F P, Gueguen A, Wu C I, Hogan T, Kanatzidis M G. High figure of merit in nanostructured n-Type KPbmSbTem + 2 thermoelectric materials. Chemistry of Materials, 2010, 22(3): 1046–1053

    Google Scholar 

  60. Li J F, Liu W S, Zhao L D, Zhou M. High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2010, 2(4): 152–158

    Google Scholar 

  61. Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K. Giant thermoelectric Seebeck coefficient of a twodimensional electron gas in SrTiO3. Nature Materials, 2007, 6(2): 129–134

    Google Scholar 

  62. Hicks L D, Harman T C, Sun X, Dresselhaus M. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B: Condensed Matter and Materials Physics, 1996, 53(16): 10493–10496

    Google Scholar 

  63. Kim J H, Jung Y C, Suh S H, Kim J S. MOCVD of Bi2Te3 and Sb2Te3 on GaAs substrates for thin-film thermoelectric applications. Journal of Nanoscience and Nanotechnology, 2006, 6(11): 3325–3328

    Google Scholar 

  64. Deng Y, Cui C W, Zhang N L, Ji T H, Yang Q L, Guo L. Fabrication of bismuth telluride nanotubes via a simple solvothermal process. Solid State Communications, 2006, 138(3): 111–113

    Google Scholar 

  65. Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R. Silicon nanowires as efficient thermoelectric materials. Nature, 2008, 451(7175): 168–171

    Google Scholar 

  66. Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175): 163–167

    Google Scholar 

  67. Zhang G Q, Yu Q X, Li X G. Wet chemical synthesis and thermoelectric properties of V–VI one- and two-dimensional nanostructures. Dalton Transactions (Cambridge, England), 2010, 39(4): 993–1004

    Google Scholar 

  68. Wang T, Mehta R, Karthik C, Ganesan P G, Singh B, Jiang W, Ravishankar N, Borca-Tasciuc T, Ramanath G. Microsphere Bouquets of Bismuth Telluride Nanoplates: Room-Temperature Synthesis and Thermoelectric Properties. Journal of Physical Chemistry C, 2010, 114(4): 1796–1799

    Google Scholar 

  69. Caylor J C, Coonley K, Stuart J, Colpitts T, Venkatasubramanian R. Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Applied Physics Letters, 2005, 87(2): 023105

    Google Scholar 

  70. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thinfilm thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602

    Google Scholar 

  71. Harman T C, Taylor P J, Walsh M P, LaForge B E. Quantum dot superlattice thermoelectric materials and devices. Science, 2002, 297(5590): 2229–2232

    Google Scholar 

  72. Harman T C, Walsh M P, LaForge B E, Turner G W. Nanostructured thermoelectric materials. Journal of Electronic Materials, 2005, 34(5): 19–22

    Google Scholar 

  73. Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power of NaCo2O4 single crystals. Physical Review B: Condensed Matter and Materials Physics, 1997, 56(20): R12685–R12687

    Google Scholar 

  74. Takahashi Y, Gotoh Y, Akimoto J. Single-crystal growth, crystal and electronic structure of NaCoO2. Journal of Solid State Chemistry, 2003, 172(1): 22–26

    Google Scholar 

  75. Kishan H, Awana V P S, Ansari M A, Gupta A, Saxena R B, Ganesan V, Narlikar A V, Cardoso C A, Nirmala R, Buddhikot D, Malik S K. Resistivity and Thermoelectric power of NaxCoO2 (x = 1.0, 0.7 and 0.6) system. Journal of Applied Physics, 2005, 97(10): 10A904-1–10A904-3

    Google Scholar 

  76. Jood P, Peleckis G, Wang X L, Dou S X, Yamauchi H, Karppinen M. Phase formation and magnetotransport of alkali metal doped Na0.75CoO2 thermoelectric oxide. Journal of Applied Physics, 2010, 107(9): 09D716-1–09D716-3

    Google Scholar 

  77. Kawata T, Iguchi Y, Itoh T, Takahata K, Terasaki I. Na-site substitution effects on the thermoelectric properties of NaCo2O4. Physical Review B: Condensed Matter and Materials Physics, 1999, 60(15): 10584–10587

    Google Scholar 

  78. Nagira T, Ito M, Katsuyama S, Majima K, Nagai H. Thermoelectric properties of (Na1 − y My)xCo2O4 (M = K, Sr, Y, Nd, Sm and Yb; y = 0.01∼0.35). Journal of Alloys and Compounds, 2003, 348(1-2): 263–269

    Google Scholar 

  79. Peleckis G, Karppinen M, Yamauchi H. Isovalent substitution effects in the Na layer of γ-Na0.75CoO2 thermoelectric oxide. Physica. C, Superconductivity, 2007, 460–462(Part 1): 485–486

    Google Scholar 

  80. Park K, Jang K U. Improvement in high-temperature thermoelectric properties of NaCo2O4 through partial substitution of Ni for Co. Materials Letters, 2006, 60(8): 1106–1110

    Google Scholar 

  81. Miyazaki Y, Onoda M, Oku T, Kikuchi M, Ishii Y, Ono Y, Morii Y, Kajitani T. Modulated structure of the thermoelectric compound [Ca2CoO3]0.62 CoO2. Journal of the Physical Society of Japan, 2002, 71(2): 491–497

    Google Scholar 

  82. Shikanoa M, Funahashi R. Electrical and thermal properties of single-crystalline(Ca2CoO3)0.7O2 with a Ca3Co4O9 structure. Applied Physics Letters, 2003, 82(12): 1851–1853

    Google Scholar 

  83. Prevel M, Lemonnier S, Klein Y, Hébert S, Chateigner D, Ouladdiaf B, Noudem J G. Textured Ca3Co4O9 thermoelectric oxides by thermoforging process. Journal of Applied Physics, 2005, 98(9): 093706

    Google Scholar 

  84. Takeuchi T, Kondo T, Soda K, Mizutani U, Funahashi R, Shikano M, Tsuda S, Yokoya T, Shin S, Muro T. Electronic structure and large thermoelectric power in Ca3Co4O9. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137: 595–599

    Google Scholar 

  85. Takeuchi T, Kondo T, Takami T, Takahashi H, Ikuta H, Mizutani U, Soda K, Funahashi R, Shikano M, Mikami M, Tsuda S, Yokoya T, Shin S, Muro T. Contribution of electronic structure to the large thermoelectric power in layered cobalt oxides. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(12): 125410

    Google Scholar 

  86. Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R A, Sasaki T. Superconductivity in two-dimensional CoO2 layers. Nature, 2003, 422(6927): 53–55

    Google Scholar 

  87. Uher C, Yang J, Hu S, Morelli D, Meisner G. Transport properties of pure and doped MNiSn (M = Zr, Hf). Physical Review B: Condensed Matter and Materials Physics, 1999, 59(13): 8615–8621

    Google Scholar 

  88. Zhou M, Chen L D, Feng C D, Wang D L, Li J F. Moderatetemperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1 − x TaxCoSb. Journal of Applied Physics, 2009, 101(11): 113714

    Google Scholar 

  89. Zou M M, Li J F, Du B, Liu D W, Kita T. Fabrication and thermoelectric properties of fine-grained TiNiSn compounds. Journal of Solid State Chemistry, 2009, 182(11): 3138–3142

    Google Scholar 

  90. Barth J, Schoop M, Gloskovskii A, Shkabko A, Weidenkaff A, Felser C. Investigation of the thermoelectric properties of the series TiCo1 − x NixSnxSb1 − x . Zeitschrift fur Anorganische und Allgemeine Chemie, 2010, 636(1): 132–136

    Google Scholar 

  91. Shen Q, Chen L, Goto T, Hirai T, Yang J, Meisner G P, Uher C. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Applied Physics Letters, 2001, 79(25): 4165

    Google Scholar 

  92. Culp S, Poon S, Hickman N, Tritt T M, Blumm J. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800°C. Applied Physics Letters, 2006, 88(4): 042106

    Google Scholar 

  93. Bux S K, Fleurial J P, Kaner R B. Nanostructured materials for thermoelectric applications. Chemical Communications (Cambridge), 2010, 46(44): 8311–8324

    Google Scholar 

  94. Riffat S B, Ma X. Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering, 2003, 23(8): 913–935

    Google Scholar 

  95. El-Genk M S, Saber H H, Caillat T. Efficient segmented thermoelectric unicouples for space power applications. Energy Conversion and Management, 2003, 44(11): 1755–1772

    Google Scholar 

  96. Mayer P, Ram R. Thin-film thermoelectric generator element characterization. In: Proceedings of 24th International Conference on Thermoelectrics, ICT 2005. Clemson, SC, USA 2005, 280–283

  97. Kim I H. (Bi,Sb)2(Te,Se)3-based thin film thermoelectric generators. Materials Letters, 2000, 43(5–6): 221–224

    Google Scholar 

  98. Snyder G J, Toberer E S. Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105–114

    Google Scholar 

  99. Matsubara K. Development of a high efficient thermoelectric stack for a waste exhaust heat recovery of vehicles. In: Proceedings ICT’02. 2003, 418–423

  100. Lange R G, Carroll W P. Review of recent advances of radioisotope power systems. Energy Conversion and Management, 2008, 49(3): 393–401

    Google Scholar 

  101. Amatya R, Ram R. Solar Thermoelectric Generator for Micropower Applications. Journal of Electronic Materials, 2010, 39(9): 1735–1740

    Google Scholar 

  102. Xie M, Gruen D M. Potential impact of ZT = 4 thermoelectric materials on solar thermal energy conversion technologies. Journal of Physical Chemistry B, 2010, 114(45): 14339–14342

    Google Scholar 

  103. Goldsmid H. Electronic refrigeration, London: Pion Limited, 1986, 227

    Google Scholar 

  104. Redus R H, Huber A C, Pantazis J A. Improved thermoelectrically cooled X-ray detectors and electronics. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458(1–2): 214–219

    Google Scholar 

  105. Bale G, Holland A, Seller P, Lowe B. Cooled CdZnTe detectors for X-ray astronomy. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 436(1–2): 150–154

    Google Scholar 

  106. Huebener R P, Tsuei C C. Prospects for Peltier cooling of superconducting electronics. Cryogenics, 1998, 38(3): 325–328

    Google Scholar 

  107. Bojić M, Savanović G, Trifunović N, Radović L, Šaljić D. Thermoelectric cooling of a train carriage by using a coldnessrecovery device. Energy, 1997, 22(5): 493–500

    Google Scholar 

  108. Morrow R C, Crabb T M. Biomass Production System (BPS) plant growth unit. Advances in Space Research, 2000, 26(2): 289–298

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laifeng Li.

Additional information

Prof. Laifeng LI, Director of the Center for Cryogenic Materials and Engineering, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS) since 1998, holds a PhD from the Institute of Physics, CAS in 1996, and postdoctoral in the University of Michigan at Ann Arbor in 1998, and becomes a full professor in the Cryogenic Laboratory of CAS in the same year. He has authored/co-authored over 100 major research papers in the journals such as Adv. Mater., Appl. Phys. Lett., J. Appl. Phys., and Chem. of Materials in the areas of thermo electrical materials, negative expansion materials, insulation polymer, toughening ceramics and applied superconductivity, 2 books and obtained 12 patents. He is the Editor of the Chinese Journal of Materials Research and the Journal of Cryogenics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Chen, Z., Zhou, M. et al. Developments in semiconductor thermoelectric materials. Front. Energy 5, 125–136 (2011). https://doi.org/10.1007/s11708-011-0150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-011-0150-1

Keywords

Navigation