Skip to main content
Log in

On the geobiological evaluation of hydrocarbon source rocks

  • Research Article
  • Published:
Frontiers of Earth Science in China Aims and scope Submit manuscript

Abstract

Hydrocarbon source rocks are characterized by the hydrocarbon discharge, and the alteration and variation in organic compositions and organic content due to the enhanced thermal maturation. These variations throw constraints on the application of the conventional inversion evaluation of hydrocarbon potential by assessing the residual organic matter left in source rocks. Geobiology, probing the interaction between the life system and the earth system, provides new principles in deciphering the whole dynamic processes related to the organic evolution history from living biomass to organic burial. Geobiological subdisciplines, including molecular geobiology, geomicrobiology, geoecology and biogeochemistry, offer new methodology and techniques to estimate the paleoproductivity, depositional organics and organic burial capacity and their components. Geobiofacies, newly proposed herein, is terminologized to define the geobiological dynamic processes through the combination of biofacies with organic facies and sedimentary facies, and expressed by the biohabitat types, paleoproductivity, depositional and preserved organics. Geobiofacies is identified as a useful means to create the geobiological evaluation system, which in turn rectifies the conventional evaluation system for the marine source rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amend J P, Fedo C, Cady S L, et al (2001). Dialogue: Geobiology and geomicrobiology in the 21st century. GSA Today, 11: 10

    Google Scholar 

  • Banerjee A, Jha M, Mittal A K, et al (2000). The effective source rocks in the north Cambay basin, India. Marine and Petroleum Geology, 17: 1,111–1,129

    Article  Google Scholar 

  • Banfield J F, Nealson K H (1997). Geomicrobiology: Interactions between microbes and minerals. Review in Mineralogy. Washington DC: Mineralogical Society of America

    Google Scholar 

  • Beard B L, Johnson C M (2004). Fe isotope variations in the modern and ancient earth and other planetary bodies. Reviews in Mineralogy and Geochemistry, 55: 319–357

    Article  Google Scholar 

  • Brocks J J, Logan G A, Buick R, et al (1999). Archean molecular fossils and the early rise of eukaryotes. Science, 285: 1033–1036

    Article  Google Scholar 

  • Brocks J J, Pearson A (2005). Building the biomarker tree of life. Rev Mineral Geochem, 59: 233–258

    Article  Google Scholar 

  • Clegg H, Wilkes H, Horsfield B (1997). Carbazole distributions in carbonate and clastic source rocks. Geochimica et Cosmochimica Acta, 61: 5,335–5,345

    Article  Google Scholar 

  • Demaison G J, Moore G T (1980). Anoxic environments and oil source bed genesis. Organic Geochemistry, 2: 9–31

    Article  Google Scholar 

  • Dutkiewicz A, Volk H, Ridley J, et al (2003). Biomarkers, brines, and oil in the Mesoproterozoic, Roper Superbasin, Australia. Geology, 31(11): 981–984

    Article  Google Scholar 

  • Ercegovac M, Kostić A (2006). Organic facies and palynofacies: Nomenclature, classification and applicability for petroleum source rock evaluation. International Journal of Coal Geology, 68: 70–78

    Article  Google Scholar 

  • Fildani A, Hanson A D, Chen Z, et al (2005). Geochemical characteristics of oil and source rocks and implications for petroleum systems, Talara Basin, northwest Peru. AAPG Bulletin, 89: 1,519–1,545

    Article  Google Scholar 

  • Glikson M (2001). The application of electron microscopy and microanalysis in conjunction with organic petrology to further the understanding of organic-mineral association; examples from Mount Isa and McArthur basins, Australia. International Journal of Coal Geology, 47: 139–159

    Article  Google Scholar 

  • Gong Y, Xu R, Feng Q, et al (2007). Hypersaline and anoxia in the Devonian Frasnian-Famennian transition: Molecular fossil and mineralogical evidences from Guangxi, South China. Frontier of Earth Science in China, this issue

  • Grice K, Cao C, Love G D, et al (2005). Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307: 706–709

    Article  Google Scholar 

  • Gu S, Zhang M, Gui B, et al (2007). An attempt to quantitatively reconstruct the primary productivity by counting the radiolarian fossils in cherts from the latest Permian Dalong Formation in southwestern China. Frontier of Earth Science in China, this issue

  • Henderson G M (2002). New oceanic proxies for paleoclimate. Earth and Planetary Science Letters, 203: 1–13

    Article  Google Scholar 

  • Holbourn A E, Kuhnt W, Söding E (2001). Atlantic paleobathymetry, paleoproductivity and paleocirculation in the late Albian: The benthic foraminiferal record. Palaeogeography, Palaeoclimatology, Palaeoecology, 170: 171–196

    Article  Google Scholar 

  • Hu C, Pan H, Ma Z, et al (2007). Iron abundance in the marine carbonate as a proxy of the paleo-productivity in hydrocarbon source rocks. Earth Science—Journal of China University of Geosciences, in press

  • Huc A Y, Bertrand P, Stow D A V (2000). Depositional processes of source rocks in deep offshore settings; Quaternary analogs. In: Annual Meeting Expanded Abstracts-American Association of Petroleum Geologists. 70

  • Jin Z, Zhang Y, Chen S (2000). Fluctuating tectonic and sedimentary processes in Tarim basin. Science in China (D), 35(6): 530–539

    Google Scholar 

  • Jorissen F J, Rohling E J (2000). Faunal prespectives on paleoproductivity. Marine Micropaleontology, 40(3): 131–134

    Article  Google Scholar 

  • Kang Y (2004). Distribution of the oil and gas in the main basins in China and the exploration experience. Urumqi: Science and Technology Press of Xinjiang

    Google Scholar 

  • Katz B J (2005). Controlling factors on source rock development; a review of productivity, preservation, and sedimentation rate. In: Harris N B, ed. The deposition of organic-carbon-rich sediments; models, mechanisms, and consequences. Special Publication-Society for Sedimentary Geology, 82: 7–16

  • Knoll A H (2003). The geological consequences of evolution. Geobiology, 1: 3–14

    Article  Google Scholar 

  • Knoll A H, Hayes J M (1997). Geobiology: Articulating a concept. In: Lane R H, Lipps J, Steininger F F, et al., eds. Paleontology in the 21st Century. Frankfurt, International Senckenberg Conference. Kleine Senckenberg, 25: 105–108

  • Knoll A H, Hayes J M (2000). Geobiology: Problems and prospects. In: Lane R H, Steininger F F, Kaesler R L, et al., eds. Fossils and the Future: Paleontology in the 21st Century. Senckenberg-Buch, 74: 149

  • Kump L R, Arthur M A (1999). Interpreting carbon isotope excursions: Carbonates and organic matter. Chemical Geology, 161: 181–198

    Article  Google Scholar 

  • Kuypers M M M, van Breugel Y, Schouten S, et al (2004). N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology, 32: 853–856

    Article  Google Scholar 

  • Lash G G, Engelder T (2005). An analysis of horizontal microcracking during catagenesis; example from the Catskill Delta complex. AAPG Bulletin, 89: 1433–1449

    Article  Google Scholar 

  • Leythaeuser D (1988). Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae Field Area, North Sea, I: Gross composition of C+ 15 saturated hydrocarbons. Geochim Cosmochim Acta, 52(6): 701–713

    Article  Google Scholar 

  • Liang D, Chen J (2005). Source and oil correlation in the high-post mature marine strata in China. Petroleum Exploration and Exploitation, 32(4): 8–14

    Google Scholar 

  • Ma Y (2006). Exploration of marine oil and gas fields in China: Exemplified by the Puguang large gas filed in Sichuan basin. Marine Oil and Gas Geology, 11(2): 35–40

    Google Scholar 

  • Mucci A, Sundby B, Gehlen M, et al (2000). The fate of carbon in continental shelf sediments of eastern Canada: A case study. Deep-Sea Research II, 47: 733–760

    Article  Google Scholar 

  • Noffke N (2005). Geobiology—A holistic scientific discipline. Palaeogeography, Palaeoclimatology, Palaleoecology, 219: 1–3

    Article  Google Scholar 

  • Parrish J T (1982). Upwelling and petroleum source beds with reference to Palaeozoic. AAPG Bulletin, 66: 750–774

    Article  Google Scholar 

  • Pedersen T F, Calvert S E (1990). Anoxia vs productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rock? AAPG Bulletin, 74: 454–466

    Article  Google Scholar 

  • Pennisi E (2002). Geobiologists: As diverse as the bugs they study. Science, 296: 1,058–1,060

    Google Scholar 

  • Priscu J C, Adams E E, Lyons W B, et al (1999). Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science, 286: 2,141–2,144

    Article  Google Scholar 

  • Qin J, Zheng L, Tenger (2007). Study on restitution coefficient of original content of total organic carbon for high mature marine source rocks. Frontier of Earth Science in China, this issue

  • Rabbani A R, Kamali M R (2005). Source rock evaluation and petroleum geochemistry, offshore SW Iran. Journal of Petroleum Geology, 28: 413–428

    Article  Google Scholar 

  • Rasmussen B (2005). Evidence for pervasive petroleum generation and migration in 3.2 and 2.63 Ga shales. Geology, 33: 497–500

    Article  Google Scholar 

  • Riding R, Liang L (2005). Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219: 101–115

    Article  Google Scholar 

  • Riediger C, Carrelli G G, Zonneveld J P (2004). Hydrocarbon source rock characterization and thermal maturity of the Upper Triassic Baldonnel and Pardonet Formations, northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 52: 277–301

    Article  Google Scholar 

  • Severmann S, Larsen O, Palmer M R, et al (2002). The isotopic signature of Fe-mineralization during early diagenesis. Geochimica et Cosmochimica Acta, 66: A698

    Google Scholar 

  • Sharaf L M (2003). Source rock evaluation and geochemistry of condensates and natural gases, offshore Nile Delta, Egypt. Journal of Petroleum Geology, 26: 189–209

    Article  Google Scholar 

  • Shen G, Shi B (2002). Oceanographic Ecology. Beijing: Science Press

    Google Scholar 

  • Siebert C, McManus J, Bice A, et al (2006). Molybdenum isotope signatures in continental margin marine sediments. Earth and Planetary Science Letters, 241: 723–733

    Article  Google Scholar 

  • Stein R (2004). Origin of marine petroleum source rocks from the Late Jurassic to Early Cretaceous Norwegian Greenland Seaway; evidence for stagnation and upwelling. Marine and Petroleum Geology, 21: 157–176

    Article  Google Scholar 

  • Summons R E, Jahnke L L, Hope J M, et al (1999). 2-methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400: 554–557

    Article  Google Scholar 

  • Tyson R V (2005). The “productivity versus preservation” controversy; cause, flaws, and resolution. In: The deposition of organicarbon-rich sediments; models, mechanisms, and consequences. Harris-Nicholas-B, Special Publication-Society for Sedimentary Geology, 82: 17–33

    Google Scholar 

  • Tyson R V, Pearson T H (1991). Modern and ancient continental shelf anoxia. Geological Society of Special Publication, 58: 470–482

    Google Scholar 

  • Voigt S, Gale A S, Voigt T (2006). Sea-level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis. Cretaceous Research, 27: 836–858

    Article  Google Scholar 

  • Walker J J, Spear J R, Pace N R, et al (2005). Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature, 434: 1011–1014

    Article  Google Scholar 

  • Wang H, Ma X, Liu D, et al (2007). Chemical variation from biolipids to sedimentary organic matter in modern oceans and its implication to the geobiological evaluation of hydrocarbon source rocks. Frontier of Earth Science in China, this issue

  • Wilde P, Timothy W L, Quinby-Hunt M S (2004). Organic carbon proxies in black shales: Molybdenum. Chemical Geology, 206: 167–176

    Article  Google Scholar 

  • Xie S, Gong Y, Tong J, et al (2006). Advancement from paleontology to geobiology. Chinese Science Bulletin, 51(19): 2327–2336

    Article  Google Scholar 

  • Xie S, Pancost R D, Yin H, et al (2005). Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 434: 494–497

    Article  Google Scholar 

  • Xie X, Yin H, Xie S (2007). Comparison on forward and inverse analysis methods of marine hydrocarbon source rocks. Earth Science—Journal of China University of Geosciences (in press)

  • Yan J, Liu X (2007). Geobiological interpretation of the oxygen-deficient deposits of the middle Permian marine source rocks in South China: A working hypothesis. Frontier of Earth Science in China, this issue

  • Yang H, Wang Y, Chen L, et al (2007). Calci-microbialite as a potential source rock and its geomicrobiological processes. Frontier of Earth Science in China, this issue

  • Yin H, Yang F, Xie S, et al (2004). Biogeology. Wuhan: Science and Technology Press of Hubei

    Google Scholar 

  • Younes M A (2001). Source rock-dependent biomarker properties and stable carbon isotopic composition of crude oils from West Bakr Fields, onshore Gulf of Suez, Egypt; a case study. Annual Meeting Expanded Abstracts—AAPG, 222

  • Younes M A (2003). Hydrocarbon seepage generation and migration in the southern Gulf of Suez, Egypt; insights from biomarker characteristics and source rock modeling. Journal of Petroleum Geology, 26: 211–224

    Article  Google Scholar 

  • Younes M A, Philp R P (2005). Source rock characterization based on biological marker distributions of crude oils in the southern Gulf of Suez, Egypt. Journal of Petroleum Geology, 28(3): 301–317

    Article  Google Scholar 

  • Zhang Y, He W, Feng Q (2007). A preliminary biogeochemistry-based quantification of primary productivity of end-Permian deep-water basin at Dongpan Section, Guangxi, South China. Frontier of Earth Science in China, this issue

  • Zhou L, Zhou H, Li M, et al (2007). Molybdenum isotope signatures from Yangtze block continental margin and its indication to organic burial rate. Frontier of Earth Science in China, this issue

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xie Shucheng.

Additional information

__________

Translated from Earth Science—Journal of China University of Geosciences, 2007, 32(6): 727–740 [译自: 地球科学—中国地质大学学报]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shucheng, X., Yin, H., Xie, X. et al. On the geobiological evaluation of hydrocarbon source rocks. Front. Earth Sci. China 1, 389–398 (2007). https://doi.org/10.1007/s11707-007-0041-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-007-0041-2

Keywords

Navigation