Skip to main content
Log in

Silicate-doped hydroxyapatite and its promotive effect on bone mineralization

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Bone defect is one of the most common diseases in clinic. Existing therapeutic approaches have encountered many problems, such as lack of autogenous allogeneic bone and immunological rejection to allogeneic implant. Synthetic hydroxyapatite (HA) provided solutions for bone repair, since the HA is the main inorganic component of animals’ bone. However, HA has good biocompatibility, but does not possess osteogenic capability, which is of significance for modern bone repair materials. Si is an essential trace element in bone tissue, and it has been demonstrated to be able to promote bone formation. Therefore, silicate-doped hydroxyapatite (Si-HA) may serve as a promising material for bone repair, and promote bone regeneration in the repair. The current review discusses development of Si-HA, focusing on its preparation and characterization, in vitro and in vivo evaluations of the material, positive effect of Si-HA on promoting bone formation in clinical applications, and molecular mechanism investigation of such promotive effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McConnell D, Frajola W J, Deamer D W. Relation between the inorganic chemistry and biochemistry of bone mineralization. Science, 1961, 133(3448): 281–282

    Article  CAS  Google Scholar 

  2. Posner A S. The mineral of bone. Clinical Orthopaedics and Related Research, 1985, 200(200): 87–99

    CAS  Google Scholar 

  3. Liao S S, Cui F Z, Zhang W, et al. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2004, 69(2): 158–165

    CAS  Google Scholar 

  4. Philipson B. Composition of cement lines in bone. Journal of Histochemistry and Cytochemistry, 1965, 13(4): 270–281

    Article  CAS  Google Scholar 

  5. Hendricks S B, Hill W L. The nature of bone and phosphate rock. Proceedings of the National Academy of Sciences of the United States of America, 1950, 36(12): 731–737

    Article  CAS  Google Scholar 

  6. Levitt S R, Crayton P H, Monroe E A, et al. Forming method for apatite prostheses. Journal of Biomedical Materials Research, 1969, 3(4): 683–684

    Article  CAS  Google Scholar 

  7. Perloff A, Posner A S. Preparation of pure hydroxyapatite crystals. Science, 1956, 124(3222): 583–584

    Article  CAS  Google Scholar 

  8. McCann H G. Reactions of fluoride ion with hydroxyapatite. Journal of Biological Chemistry, 1953, 201(1): 247–259

    CAS  Google Scholar 

  9. Kay M I, Young R A, Posner A S. Crystal structure of hydroxyapatite. Nature, 1964, 204(4963): 1050–1052

    Article  CAS  Google Scholar 

  10. Sudarsanan K, Young R A. Significant precision in crystal structural details. Holly Springs hydroxyapatite. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1969, 25(8): 1534–1543

    Article  CAS  Google Scholar 

  11. Qiu Z Y, Li G, Zhang Y Q, et al. Fine structure analysis and sintering properties of Si-doped hydroxyapatite. Biomedical Materials, 2012, 7(4): 045009

    Article  CAS  Google Scholar 

  12. Wang J, Yang Q, Mao C, et al. Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bitemplate-induced biomimetic bone substitutes. Journal of Biomedical Materials Research Part A, 2012, 100A(11): 2929–2938

    Article  CAS  Google Scholar 

  13. Wang Y, Ma J, Zhou L, et al. Dual functional selenium-substituted hydroxyapatite. Interface Focus, 2012, 2(3): 378–386

    Article  Google Scholar 

  14. Chen C, Qiu Z Y, Zhang S M, et al. Biomimetic fibronectin/mineral and osteogenic growth peptide/mineral composites synthesized on calcium phosphate thin films. Chemical Communications, 2011, 47(39): 11056–11058

    Article  CAS  Google Scholar 

  15. Tang Z-B, Cao J-K, Wen N, et al. Posterolateral spinal fusion with nano-hydroxyapatite-collagen/PLA composite and autologous adipose-derived mesenchymal stem cells in a rabbit model. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6(4): 325–336

    Article  CAS  Google Scholar 

  16. Zhang C, Hu Y Y, Cui F Z, et al. A study on a tissue-engineered bone using rhBMP-2 induced periosteal cells with a porous nanohydroxyapatite/collagen/poly(L-lactic acid) scaffold. Biomedical Materials, 2006, 1(2): 56–62

    Article  CAS  Google Scholar 

  17. Tram Do T N, Lee W-H, Loo C-Y, et al. Hydroxyapatite nanoparticles as vectors for gene delivery. Therapeutic Delivery, 2012, 3(5): 623–632

    Article  CAS  Google Scholar 

  18. Guo Y-P, Guo L-H, Yao Y-B, et al. Magnetic mesoporous carbonated hydroxyapatite microspheres with hierarchical nanostructure for drug delivery systems. Chemical Communications, 2011, 47(44): 12215–12217

    Article  CAS  Google Scholar 

  19. Ito A, Otsuka M, Kawamura H, et al. Zinc-containing tricalcium phosphate and related materials for promoting bone formation. Current Applied Physics, 2005, 5(5): 402–406

    Article  Google Scholar 

  20. Ito A, Kawamura H, Otsuka M, et al. Zinc-releasing calcium phosphate for stimulating bone formation. Materials Science and Engineering C, 2002, 22(1): 21–25

    Article  Google Scholar 

  21. Grandjean-Laquerriere A, Laquerriere P, Jallot E, et al. Influence of the zinc concentration of sol-gel derived zinc substituted hydroxyapatite on cytokine production by human monocytes in vitro. Biomaterials, 2006, 27(17): 3195–3200

    Article  CAS  Google Scholar 

  22. Velard F, Laurent-Maquin D, Braux J, et al. The effect of zinc on hydroxyapatite-mediated activation of human polymorphonuclear neutrophils and bone implant-associated acute inflammation. Biomaterials, 2010, 31(8): 2001–2009

    Article  CAS  Google Scholar 

  23. Nielsen F H. Ultratrace elements in nutrition. Annual Review of Nutrition, 1984, 4(1): 21–41

    Article  CAS  Google Scholar 

  24. Carlisle E M. Silicon: a possible factor in bone calcification. Science, 1970, 167(3916): 279–280

    Article  CAS  Google Scholar 

  25. Carlisle E M. A relationship between silicon and calcium in bone formation. Federation Proceedings, 1970, 29: 565

    Google Scholar 

  26. Carlisle E M, Garvey D L. The effect of silicon on formation of extracellular matrix components by chondrocytes in culture. Federation Proceedings, 1982, 41: 461

    Google Scholar 

  27. Carlisle E M. Silicon: an essential element for the chick. Science, 1972, 178(4061): 619–621

    Article  CAS  Google Scholar 

  28. Schwarz K, Milne D B. Growth-promoting effects of silicon in rats. Nature, 1972, 239(5371): 333–334

    Article  CAS  Google Scholar 

  29. Gibson I R, Best S M, Bonfield W. Chemical characterization of silicon-substituted hydroxyapatite. Journal of Biomedical Materials Research, 1999, 44(4): 422–428

    Article  CAS  Google Scholar 

  30. Arcos D, Rodríguez-Carvajal J, Vallet-Regí M. Silicon incorporation in hydroxylapatite obtained by controlled crystallization. Chemistry of Materials, 2004, 16(11): 2300–2308

    Article  CAS  Google Scholar 

  31. Tian T, Jiang D, Zhang J, et al. Synthesis of Si-substituted hydroxyapatite by a wet mechanochemical method. Materials Science and Engineering C, 2008, 28(1): 57–63

    Article  CAS  Google Scholar 

  32. Gibson I R, Best SM, Bonfield W. Effect of silicon substitution on the sintering and microstructure of hydroxyapatite. Journal of the American Ceramic Society, 2002, 85(11): 2771–2777

    Article  CAS  Google Scholar 

  33. Tang X L, Xiao X F, Liu R F. Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method. Materials Letters, 2005, 59(29-30): 3841–3846

    Article  CAS  Google Scholar 

  34. Leventouri T, Bunaciu C E, Perdikatsis V. Neutron powder diffraction studies of silicon-substituted hydroxyapatite. Biomaterials, 2003, 24(23): 4205–4211

    Article  CAS  Google Scholar 

  35. Palard M, Champion E, Foucaud S. Synthesis of silicated hydroxyapatite Ca10(PO4)6 − x (SiO4)x(OH)2 − x . Journal of Solid State Chemistry, 2008, 181(8): 1950–1960

    Article  CAS  Google Scholar 

  36. Porter A E, Best S M, Bonfield W. Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications. Journal of Biomedical Materials Research Part A, 2004, 68(1): 133–141

    Google Scholar 

  37. Botelho C M, Lopes M A, Gibson I R, et al. Structural analysis of Si-substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy. Journal of Materials Science: Materials in Medicine, 2002, 13(12): 1123–1127

    Article  CAS  Google Scholar 

  38. Palard M, Combes J, Champion E, et al. Effect of silicon content on the sintering and biological behaviour of Ca10(PO4)6 − x (SiO4)x(OH)2 − x ceramics. Acta Biomaterialia, 2009, 5(4): 1223–1232

    Article  CAS  Google Scholar 

  39. Botelho C M, Brooks R A, Best S M, et al. Human osteoblast response to silicon-substituted hydroxyapatite. Journal of Biomedical Materials Research Part A, 2006, 79A(3): 723–730

    Article  CAS  Google Scholar 

  40. Zhang E, Zou C, Yu G. Surface microstructure and cell biocompatibility of silicon-substituted hydroxyapatite coating on titanium substrate prepared by a biomimetic process. Materials Science and Engineering C, 2009, 29(1): 298–305

    Article  Google Scholar 

  41. Gomes P S, Botelho C, Lopes M A, et al. Evaluation of human osteoblastic cell response to plasma-sprayed silicon-substituted hydroxyapatite coatings over titanium substrates. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 94(2): 337–346

    Google Scholar 

  42. Balamurugan A, Rebelo A H, Lemos A F, et al. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Dental Materials, 2008, 24(10): 1374–1380

    Article  CAS  Google Scholar 

  43. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, 27(15): 2907–2915

    Article  CAS  Google Scholar 

  44. Eraković S, Janković A, Veljović D, et al. Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition. The Journal of Physical Chemistry B, 2012, doi: 10.1021/jp305252a

  45. Heinemann S, Heinemann C, Wenisch S, et al. Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomaterialia, 2013, 9(1): 4878–4888

    Article  CAS  Google Scholar 

  46. Balas F, Pérez-Pariente J, Vallet-Regí M. In vitro bioactivity of silicon-substituted hydroxyapatites. Journal of Biomedical Materials Research Part A, 2003, 66(2): 364–375

    CAS  Google Scholar 

  47. Hing K A, Revell P A, Smith N, et al. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials, 2006, 27(29): 5014–5026

    Article  CAS  Google Scholar 

  48. Porter A E, Patel N, Skepper J N, et al. Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the boneimplant interface. Biomaterials, 2004, 25(16): 3303–3314

    Article  CAS  Google Scholar 

  49. Jenis L G, Banco R J. Efficacy of silicate-substituted calcium phosphate ceramic in posterolateral instrumented lumbar fusion. Spine, 2010, 35(20): E1058–E1063

    Article  Google Scholar 

  50. Nagineni V V, James A R, Alimi M, et al. Silicate-substituted calcium phosphate ceramic bone graft replacement for spinal fusion procedures. Spine, 2012, 37(20): E1264–E1272

    Article  Google Scholar 

  51. Kirschner H J, Obermayr F, Schaefer J, et al. Treatment of benign bone defects in children with silicate-substituted calcium phosphate (SiCaP). European Journal of Pediatric Surgery, 2012, 22 (2): 143–147

    Article  Google Scholar 

  52. Porter A E, Botelho C M, Lopes M A, et al. Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo. Journal of Biomedical Materials Research Part A, 2004, 69 (4): 670–679

    Google Scholar 

  53. Porter A E, Best S M, Bonfield W. Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications. Journal of Biomedical Materials Research Part A, 2004, 68(1): 133–141

    Google Scholar 

  54. Porter A E, Patel N, Skepper J N, et al. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials, 2003, 24(25): 4609–4620

    Article  CAS  Google Scholar 

  55. Birchall J D, Espie AW. Biological implications of the interaction (via silanol groups) of silicon with metal ions. Ciba Foundation Symposium, 1986, 121: 140–159

    CAS  Google Scholar 

  56. Gorres K L, Raines R T. Prolyl 4-hydroxylase. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45(2): 106–124

    Article  CAS  Google Scholar 

  57. Reffitt D M, Ogston N, Jugdaohsingh R, et al. Orthosilicic acid stimulates collagen type I synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone, 2003, 32(2): 127–135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Min Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, ZY., Noh, IS. & Zhang, SM. Silicate-doped hydroxyapatite and its promotive effect on bone mineralization. Front. Mater. Sci. 7, 40–50 (2013). https://doi.org/10.1007/s11706-013-0193-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-013-0193-9

Keywords

Navigation